X-Git-Url: https://git.tld-linux.org/?p=packages%2Fllvm.git;a=blobdiff_plain;f=llvm12-build_fixes.patch;fp=llvm12-build_fixes.patch;h=804f03218472720d9052b4199b5d0b23b209312d;hp=0000000000000000000000000000000000000000;hb=9a942b15771786b61f66fd6011b30beab8f4eb8f;hpb=a9f5c8b2c627e29019650a6d45bb0abeeedad1d1 diff --git a/llvm12-build_fixes.patch b/llvm12-build_fixes.patch new file mode 100644 index 0000000..804f032 --- /dev/null +++ b/llvm12-build_fixes.patch @@ -0,0 +1,481 @@ +diff -urN llvm-12.0.0.src.orig/tools/lld/MachO/mach-o/compact_unwind_encoding.h llvm-12.0.0.src/tools/lld/MachO/mach-o/compact_unwind_encoding.h +--- llvm-12.0.0.src.orig/tools/lld/MachO/mach-o/compact_unwind_encoding.h 1970-01-01 01:00:00.000000000 +0100 ++++ llvm-12.0.0.src/tools/lld/MachO/mach-o/compact_unwind_encoding.h 2021-04-16 16:24:55.701577683 +0200 +@@ -0,0 +1,477 @@ ++//===------------------ mach-o/compact_unwind_encoding.h ------------------===// ++// ++// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. ++// See https://llvm.org/LICENSE.txt for license information. ++// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception ++// ++// ++// Darwin's alternative to DWARF based unwind encodings. ++// ++//===----------------------------------------------------------------------===// ++ ++ ++#ifndef __COMPACT_UNWIND_ENCODING__ ++#define __COMPACT_UNWIND_ENCODING__ ++ ++#include ++ ++// ++// Compilers can emit standard DWARF FDEs in the __TEXT,__eh_frame section ++// of object files. Or compilers can emit compact unwind information in ++// the __LD,__compact_unwind section. ++// ++// When the linker creates a final linked image, it will create a ++// __TEXT,__unwind_info section. This section is a small and fast way for the ++// runtime to access unwind info for any given function. If the compiler ++// emitted compact unwind info for the function, that compact unwind info will ++// be encoded in the __TEXT,__unwind_info section. If the compiler emitted ++// DWARF unwind info, the __TEXT,__unwind_info section will contain the offset ++// of the FDE in the __TEXT,__eh_frame section in the final linked image. ++// ++// Note: Previously, the linker would transform some DWARF unwind infos into ++// compact unwind info. But that is fragile and no longer done. ++ ++ ++// ++// The compact unwind endoding is a 32-bit value which encoded in an ++// architecture specific way, which registers to restore from where, and how ++// to unwind out of the function. ++// ++typedef uint32_t compact_unwind_encoding_t; ++ ++ ++// architecture independent bits ++enum { ++ UNWIND_IS_NOT_FUNCTION_START = 0x80000000, ++ UNWIND_HAS_LSDA = 0x40000000, ++ UNWIND_PERSONALITY_MASK = 0x30000000, ++}; ++ ++ ++ ++ ++// ++// x86 ++// ++// 1-bit: start ++// 1-bit: has lsda ++// 2-bit: personality index ++// ++// 4-bits: 0=old, 1=ebp based, 2=stack-imm, 3=stack-ind, 4=DWARF ++// ebp based: ++// 15-bits (5*3-bits per reg) register permutation ++// 8-bits for stack offset ++// frameless: ++// 8-bits stack size ++// 3-bits stack adjust ++// 3-bits register count ++// 10-bits register permutation ++// ++enum { ++ UNWIND_X86_MODE_MASK = 0x0F000000, ++ UNWIND_X86_MODE_EBP_FRAME = 0x01000000, ++ UNWIND_X86_MODE_STACK_IMMD = 0x02000000, ++ UNWIND_X86_MODE_STACK_IND = 0x03000000, ++ UNWIND_X86_MODE_DWARF = 0x04000000, ++ ++ UNWIND_X86_EBP_FRAME_REGISTERS = 0x00007FFF, ++ UNWIND_X86_EBP_FRAME_OFFSET = 0x00FF0000, ++ ++ UNWIND_X86_FRAMELESS_STACK_SIZE = 0x00FF0000, ++ UNWIND_X86_FRAMELESS_STACK_ADJUST = 0x0000E000, ++ UNWIND_X86_FRAMELESS_STACK_REG_COUNT = 0x00001C00, ++ UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF, ++ ++ UNWIND_X86_DWARF_SECTION_OFFSET = 0x00FFFFFF, ++}; ++ ++enum { ++ UNWIND_X86_REG_NONE = 0, ++ UNWIND_X86_REG_EBX = 1, ++ UNWIND_X86_REG_ECX = 2, ++ UNWIND_X86_REG_EDX = 3, ++ UNWIND_X86_REG_EDI = 4, ++ UNWIND_X86_REG_ESI = 5, ++ UNWIND_X86_REG_EBP = 6, ++}; ++ ++// ++// For x86 there are four modes for the compact unwind encoding: ++// UNWIND_X86_MODE_EBP_FRAME: ++// EBP based frame where EBP is push on stack immediately after return address, ++// then ESP is moved to EBP. Thus, to unwind ESP is restored with the current ++// EPB value, then EBP is restored by popping off the stack, and the return ++// is done by popping the stack once more into the pc. ++// All non-volatile registers that need to be restored must have been saved ++// in a small range in the stack that starts EBP-4 to EBP-1020. The offset/4 ++// is encoded in the UNWIND_X86_EBP_FRAME_OFFSET bits. The registers saved ++// are encoded in the UNWIND_X86_EBP_FRAME_REGISTERS bits as five 3-bit entries. ++// Each entry contains which register to restore. ++// UNWIND_X86_MODE_STACK_IMMD: ++// A "frameless" (EBP not used as frame pointer) function with a small ++// constant stack size. To return, a constant (encoded in the compact ++// unwind encoding) is added to the ESP. Then the return is done by ++// popping the stack into the pc. ++// All non-volatile registers that need to be restored must have been saved ++// on the stack immediately after the return address. The stack_size/4 is ++// encoded in the UNWIND_X86_FRAMELESS_STACK_SIZE (max stack size is 1024). ++// The number of registers saved is encoded in UNWIND_X86_FRAMELESS_STACK_REG_COUNT. ++// UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION constains which registers were ++// saved and their order. ++// UNWIND_X86_MODE_STACK_IND: ++// A "frameless" (EBP not used as frame pointer) function large constant ++// stack size. This case is like the previous, except the stack size is too ++// large to encode in the compact unwind encoding. Instead it requires that ++// the function contains "subl $nnnnnnnn,ESP" in its prolog. The compact ++// encoding contains the offset to the nnnnnnnn value in the function in ++// UNWIND_X86_FRAMELESS_STACK_SIZE. ++// UNWIND_X86_MODE_DWARF: ++// No compact unwind encoding is available. Instead the low 24-bits of the ++// compact encoding is the offset of the DWARF FDE in the __eh_frame section. ++// This mode is never used in object files. It is only generated by the ++// linker in final linked images which have only DWARF unwind info for a ++// function. ++// ++// The permutation encoding is a Lehmer code sequence encoded into a ++// single variable-base number so we can encode the ordering of up to ++// six registers in a 10-bit space. ++// ++// The following is the algorithm used to create the permutation encoding used ++// with frameless stacks. It is passed the number of registers to be saved and ++// an array of the register numbers saved. ++// ++//uint32_t permute_encode(uint32_t registerCount, const uint32_t registers[6]) ++//{ ++// uint32_t renumregs[6]; ++// for (int i=6-registerCount; i < 6; ++i) { ++// int countless = 0; ++// for (int j=6-registerCount; j < i; ++j) { ++// if ( registers[j] < registers[i] ) ++// ++countless; ++// } ++// renumregs[i] = registers[i] - countless -1; ++// } ++// uint32_t permutationEncoding = 0; ++// switch ( registerCount ) { ++// case 6: ++// permutationEncoding |= (120*renumregs[0] + 24*renumregs[1] ++// + 6*renumregs[2] + 2*renumregs[3] ++// + renumregs[4]); ++// break; ++// case 5: ++// permutationEncoding |= (120*renumregs[1] + 24*renumregs[2] ++// + 6*renumregs[3] + 2*renumregs[4] ++// + renumregs[5]); ++// break; ++// case 4: ++// permutationEncoding |= (60*renumregs[2] + 12*renumregs[3] ++// + 3*renumregs[4] + renumregs[5]); ++// break; ++// case 3: ++// permutationEncoding |= (20*renumregs[3] + 4*renumregs[4] ++// + renumregs[5]); ++// break; ++// case 2: ++// permutationEncoding |= (5*renumregs[4] + renumregs[5]); ++// break; ++// case 1: ++// permutationEncoding |= (renumregs[5]); ++// break; ++// } ++// return permutationEncoding; ++//} ++// ++ ++ ++ ++ ++// ++// x86_64 ++// ++// 1-bit: start ++// 1-bit: has lsda ++// 2-bit: personality index ++// ++// 4-bits: 0=old, 1=rbp based, 2=stack-imm, 3=stack-ind, 4=DWARF ++// rbp based: ++// 15-bits (5*3-bits per reg) register permutation ++// 8-bits for stack offset ++// frameless: ++// 8-bits stack size ++// 3-bits stack adjust ++// 3-bits register count ++// 10-bits register permutation ++// ++enum { ++ UNWIND_X86_64_MODE_MASK = 0x0F000000, ++ UNWIND_X86_64_MODE_RBP_FRAME = 0x01000000, ++ UNWIND_X86_64_MODE_STACK_IMMD = 0x02000000, ++ UNWIND_X86_64_MODE_STACK_IND = 0x03000000, ++ UNWIND_X86_64_MODE_DWARF = 0x04000000, ++ ++ UNWIND_X86_64_RBP_FRAME_REGISTERS = 0x00007FFF, ++ UNWIND_X86_64_RBP_FRAME_OFFSET = 0x00FF0000, ++ ++ UNWIND_X86_64_FRAMELESS_STACK_SIZE = 0x00FF0000, ++ UNWIND_X86_64_FRAMELESS_STACK_ADJUST = 0x0000E000, ++ UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT = 0x00001C00, ++ UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF, ++ ++ UNWIND_X86_64_DWARF_SECTION_OFFSET = 0x00FFFFFF, ++}; ++ ++enum { ++ UNWIND_X86_64_REG_NONE = 0, ++ UNWIND_X86_64_REG_RBX = 1, ++ UNWIND_X86_64_REG_R12 = 2, ++ UNWIND_X86_64_REG_R13 = 3, ++ UNWIND_X86_64_REG_R14 = 4, ++ UNWIND_X86_64_REG_R15 = 5, ++ UNWIND_X86_64_REG_RBP = 6, ++}; ++// ++// For x86_64 there are four modes for the compact unwind encoding: ++// UNWIND_X86_64_MODE_RBP_FRAME: ++// RBP based frame where RBP is push on stack immediately after return address, ++// then RSP is moved to RBP. Thus, to unwind RSP is restored with the current ++// EPB value, then RBP is restored by popping off the stack, and the return ++// is done by popping the stack once more into the pc. ++// All non-volatile registers that need to be restored must have been saved ++// in a small range in the stack that starts RBP-8 to RBP-2040. The offset/8 ++// is encoded in the UNWIND_X86_64_RBP_FRAME_OFFSET bits. The registers saved ++// are encoded in the UNWIND_X86_64_RBP_FRAME_REGISTERS bits as five 3-bit entries. ++// Each entry contains which register to restore. ++// UNWIND_X86_64_MODE_STACK_IMMD: ++// A "frameless" (RBP not used as frame pointer) function with a small ++// constant stack size. To return, a constant (encoded in the compact ++// unwind encoding) is added to the RSP. Then the return is done by ++// popping the stack into the pc. ++// All non-volatile registers that need to be restored must have been saved ++// on the stack immediately after the return address. The stack_size/8 is ++// encoded in the UNWIND_X86_64_FRAMELESS_STACK_SIZE (max stack size is 2048). ++// The number of registers saved is encoded in UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT. ++// UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION constains which registers were ++// saved and their order. ++// UNWIND_X86_64_MODE_STACK_IND: ++// A "frameless" (RBP not used as frame pointer) function large constant ++// stack size. This case is like the previous, except the stack size is too ++// large to encode in the compact unwind encoding. Instead it requires that ++// the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact ++// encoding contains the offset to the nnnnnnnn value in the function in ++// UNWIND_X86_64_FRAMELESS_STACK_SIZE. ++// UNWIND_X86_64_MODE_DWARF: ++// No compact unwind encoding is available. Instead the low 24-bits of the ++// compact encoding is the offset of the DWARF FDE in the __eh_frame section. ++// This mode is never used in object files. It is only generated by the ++// linker in final linked images which have only DWARF unwind info for a ++// function. ++// ++ ++ ++// ARM64 ++// ++// 1-bit: start ++// 1-bit: has lsda ++// 2-bit: personality index ++// ++// 4-bits: 4=frame-based, 3=DWARF, 2=frameless ++// frameless: ++// 12-bits of stack size ++// frame-based: ++// 4-bits D reg pairs saved ++// 5-bits X reg pairs saved ++// DWARF: ++// 24-bits offset of DWARF FDE in __eh_frame section ++// ++enum { ++ UNWIND_ARM64_MODE_MASK = 0x0F000000, ++ UNWIND_ARM64_MODE_FRAMELESS = 0x02000000, ++ UNWIND_ARM64_MODE_DWARF = 0x03000000, ++ UNWIND_ARM64_MODE_FRAME = 0x04000000, ++ ++ UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001, ++ UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002, ++ UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004, ++ UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008, ++ UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010, ++ UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100, ++ UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200, ++ UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400, ++ UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800, ++ ++ UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK = 0x00FFF000, ++ UNWIND_ARM64_DWARF_SECTION_OFFSET = 0x00FFFFFF, ++}; ++// For arm64 there are three modes for the compact unwind encoding: ++// UNWIND_ARM64_MODE_FRAME: ++// This is a standard arm64 prolog where FP/LR are immediately pushed on the ++// stack, then SP is copied to FP. If there are any non-volatile registers ++// saved, then are copied into the stack frame in pairs in a contiguous ++// range right below the saved FP/LR pair. Any subset of the five X pairs ++// and four D pairs can be saved, but the memory layout must be in register ++// number order. ++// UNWIND_ARM64_MODE_FRAMELESS: ++// A "frameless" leaf function, where FP/LR are not saved. The return address ++// remains in LR throughout the function. If any non-volatile registers ++// are saved, they must be pushed onto the stack before any stack space is ++// allocated for local variables. The stack sized (including any saved ++// non-volatile registers) divided by 16 is encoded in the bits ++// UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK. ++// UNWIND_ARM64_MODE_DWARF: ++// No compact unwind encoding is available. Instead the low 24-bits of the ++// compact encoding is the offset of the DWARF FDE in the __eh_frame section. ++// This mode is never used in object files. It is only generated by the ++// linker in final linked images which have only DWARF unwind info for a ++// function. ++// ++ ++ ++ ++ ++ ++//////////////////////////////////////////////////////////////////////////////// ++// ++// Relocatable Object Files: __LD,__compact_unwind ++// ++//////////////////////////////////////////////////////////////////////////////// ++ ++// ++// A compiler can generated compact unwind information for a function by adding ++// a "row" to the __LD,__compact_unwind section. This section has the ++// S_ATTR_DEBUG bit set, so the section will be ignored by older linkers. ++// It is removed by the new linker, so never ends up in final executables. ++// This section is a table, initially with one row per function (that needs ++// unwind info). The table columns and some conceptual entries are: ++// ++// range-start pointer to start of function/range ++// range-length ++// compact-unwind-encoding 32-bit encoding ++// personality-function or zero if no personality function ++// lsda or zero if no LSDA data ++// ++// The length and encoding fields are 32-bits. The other are all pointer sized. ++// ++// In x86_64 assembly, these entry would look like: ++// ++// .section __LD,__compact_unwind,regular,debug ++// ++// #compact unwind for _foo ++// .quad _foo ++// .set L1,LfooEnd-_foo ++// .long L1 ++// .long 0x01010001 ++// .quad 0 ++// .quad 0 ++// ++// #compact unwind for _bar ++// .quad _bar ++// .set L2,LbarEnd-_bar ++// .long L2 ++// .long 0x01020011 ++// .quad __gxx_personality ++// .quad except_tab1 ++// ++// ++// Notes: There is no need for any labels in the the __compact_unwind section. ++// The use of the .set directive is to force the evaluation of the ++// range-length at assembly time, instead of generating relocations. ++// ++// To support future compiler optimizations where which non-volatile registers ++// are saved changes within a function (e.g. delay saving non-volatiles until ++// necessary), there can by multiple lines in the __compact_unwind table for one ++// function, each with a different (non-overlapping) range and each with ++// different compact unwind encodings that correspond to the non-volatiles ++// saved at that range of the function. ++// ++// If a particular function is so wacky that there is no compact unwind way ++// to encode it, then the compiler can emit traditional DWARF unwind info. ++// The runtime will use which ever is available. ++// ++// Runtime support for compact unwind encodings are only available on 10.6 ++// and later. So, the compiler should not generate it when targeting pre-10.6. ++ ++ ++ ++ ++//////////////////////////////////////////////////////////////////////////////// ++// ++// Final Linked Images: __TEXT,__unwind_info ++// ++//////////////////////////////////////////////////////////////////////////////// ++ ++// ++// The __TEXT,__unwind_info section is laid out for an efficient two level lookup. ++// The header of the section contains a coarse index that maps function address ++// to the page (4096 byte block) containing the unwind info for that function. ++// ++ ++#define UNWIND_SECTION_VERSION 1 ++struct unwind_info_section_header ++{ ++ uint32_t version; // UNWIND_SECTION_VERSION ++ uint32_t commonEncodingsArraySectionOffset; ++ uint32_t commonEncodingsArrayCount; ++ uint32_t personalityArraySectionOffset; ++ uint32_t personalityArrayCount; ++ uint32_t indexSectionOffset; ++ uint32_t indexCount; ++ // compact_unwind_encoding_t[] ++ // uint32_t personalities[] ++ // unwind_info_section_header_index_entry[] ++ // unwind_info_section_header_lsda_index_entry[] ++}; ++ ++struct unwind_info_section_header_index_entry ++{ ++ uint32_t functionOffset; ++ uint32_t secondLevelPagesSectionOffset; // section offset to start of regular or compress page ++ uint32_t lsdaIndexArraySectionOffset; // section offset to start of lsda_index array for this range ++}; ++ ++struct unwind_info_section_header_lsda_index_entry ++{ ++ uint32_t functionOffset; ++ uint32_t lsdaOffset; ++}; ++ ++// ++// There are two kinds of second level index pages: regular and compressed. ++// A compressed page can hold up to 1021 entries, but it cannot be used ++// if too many different encoding types are used. The regular page holds ++// 511 entries. ++// ++ ++struct unwind_info_regular_second_level_entry ++{ ++ uint32_t functionOffset; ++ compact_unwind_encoding_t encoding; ++}; ++ ++#define UNWIND_SECOND_LEVEL_REGULAR 2 ++struct unwind_info_regular_second_level_page_header ++{ ++ uint32_t kind; // UNWIND_SECOND_LEVEL_REGULAR ++ uint16_t entryPageOffset; ++ uint16_t entryCount; ++ // entry array ++}; ++ ++#define UNWIND_SECOND_LEVEL_COMPRESSED 3 ++struct unwind_info_compressed_second_level_page_header ++{ ++ uint32_t kind; // UNWIND_SECOND_LEVEL_COMPRESSED ++ uint16_t entryPageOffset; ++ uint16_t entryCount; ++ uint16_t encodingsPageOffset; ++ uint16_t encodingsCount; ++ // 32-bit entry array ++ // encodings array ++}; ++ ++#define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry) (entry & 0x00FFFFFF) ++#define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry) ((entry >> 24) & 0xFF) ++ ++ ++ ++#endif ++