
The syslog-ng Open Source Edition 3.4 Administrator
Guide

Publication date April 08, 2013

Abstract
This manual is the primary documentation of the syslog-ng Open Source Edition 3.4 application.

Copyright © 1996-2013 BalaBit IT Security Ltd.

This guide is published under the Creative Commons Attribution-Noncommercial-No Derivative Works (by-nc-nd) 3.0 license. See Appendix 4, Creative
Commons Attribution Non-commercial No Derivatives (by-nc-nd) License (p. 312) for details. The latest version is always available at
http://www.balabit.com/support/documentation.

This documentation and the product it describes are considered protected by copyright according to the applicable laws.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/). This product includes cryptographic
software written by Eric Young (eay@cryptsoft.com)

AIX™, AIX 5L™, AS/400™, BladeCenter™, eServer™, IBM™, the IBM™ logo, IBM System i™, IBM System i5™, IBM System x™, iSeries™, i5/OS™,
Netfinity™, NetServer™, OpenPower™, OS/400™, PartnerWorld™, POWER™, ServerGuide™, ServerProven™, and xSeries™ are trademarks or
registered trademarks of International Business Machines.

Alliance Log Agent for System i™ is a registered trademark of Patrick Townsend & Associates, Inc.

The BalaBit™ name and the BalaBit™ logo are registered trademarks of BalaBit.

Debian™ is a registered trademark of Software in the Public Interest Inc.

Linux™ is a registered trademark of Linus Torvalds.

MySQL™ is a registered trademark of Oracle and/or its affiliates.

Oracle™, JD Edwards™, PeopleSoft™, and Siebel™ are registered trademarks of Oracle Corporation and/or its affiliates.

Red Hat™, Inc., Red Hat™ Enterprise Linux™ and Red Hat™ Linux™ are trademarks of Red Hat, Inc.

SUSE™ is a trademark of SUSE AG, a Novell business.

Solaris™ is a registered trademark of Oracle and/or its affiliates.

The syslog-ng™ name and the syslog-ng™ logo are registered trademarks of BalaBit.

Windows™ 95, 98, ME, 2000, XP, Server 2003, Vista, Server 2008 and 7 are registered trademarks of Microsoft Corporation.

All other product names mentioned herein are the trademarks of their respective owners.

Some rights reserved.

DISCLAIMER

BalaBit is not responsible for any third-party Web sites mentioned in this document. BalaBit does not endorse and is not responsible or liable for any content,
advertising, products, or other material on or available from such sites or resources. BalaBit will not be responsible or liable for any damage or loss caused or
alleged to be caused by or in connection with use of or reliance on any such content, goods, or services that are available on or through any such sites or
resources.

iiwww.balabit.com

http://www.balabit.com/support/documentation
http://www.openssl.org

Table of Contents
Preface .. xiii

1. Summary of contents .. xiii
2. Target audience and prerequisites ... xiv
3. Products covered in this guide .. xiv
4. Typographical conventions ... xv
5. Contact and support information .. xv

5.1. Sales contact .. xvi
5.2. Support contact ... xvi
5.3. Training .. xvi

6. About this document .. xvi
6.1. Summary of changes ... xvi
6.2. Feedback .. xx
6.3. Acknowledgments ... xx

1. Introduction to syslog-ng .. 1
1.1. What syslog-ng is .. 1
1.2. What syslog-ng is not .. 1
1.3. Why is syslog-ng needed? ... 2
1.4. What is new in syslog-ng Open Source Edition 3.4? .. 2
1.5. Who uses syslog-ng? ... 3
1.6. Supported platforms ... 3

2. The concepts of syslog-ng ... 4
2.1. The philosophy of syslog-ng .. 4
2.2. Logging with syslog-ng .. 4

2.2.1. The route of a log message in syslog-ng .. 4
2.3. Modes of operation ... 6

2.3.1. Client mode ... 6
2.3.2. Relay mode .. 7
2.3.3. Server mode .. 7

2.4. Global objects .. 7
2.5. Timezones and daylight saving ... 8

2.5.1. A note on timezones and timestamps ... 9
2.6. The license of syslog-ng OSE ... 10
2.7. High availability support .. 10
2.8. The structure of a log message .. 10

2.8.1. BSD-syslog or legacy-syslog messages ... 10
2.8.2. IETF-syslog messages ... 12
2.8.3. Message representation in syslog-ng OSE .. 15
2.8.4. Structuring macros, metadata, and other value-pairs .. 16

3. Installing syslog-ng ... 28
3.1. Compiling syslog-ng from source .. 28
3.2. Uninstalling syslog-ng OSE .. 31
3.3. Configuring Microsoft SQL Server to accept logs from syslog-ng ... 31

4. The syslog-ng OSE quick-start guide .. 38
4.1. Configuring syslog-ng on client hosts .. 38
4.2. Configuring syslog-ng on server hosts ... 40

iiiwww.balabit.com

4.3. Configuring syslog-ng relays ... 41
4.3.1. Configuring syslog-ng on relay hosts ... 41
4.3.2. How relaying log messages works ... 43

5. The syslog-ng OSE configuration file .. 44
5.1. Location of the syslog-ng configuration file .. 44
5.2. The configuration syntax in detail ... 44
5.3. Notes about the configuration syntax .. 46
5.4. Defining configuration objects inline ... 47
5.5. Using channels in configuration objects ... 47
5.6. Global and environmental variables ... 48
5.7. Loading modules ... 49

5.7.1. Loading modules .. 50
5.8. Managing complex syslog-ng configurations ... 50

5.8.1. Including configuration files .. 50
5.8.2. Reusing configuration blocks ... 51

6. Collecting log messages — sources and source drivers .. 54
6.1. How sources work .. 54
6.2. Collecting internal messages ... 56

6.2.1. internal() source options .. 57
6.3. Collecting messages from text files .. 57

6.3.1. Notes on reading kernel messages .. 57
6.3.2. file() source options .. 58

6.4. Collecting messages using the RFC3164 protocol ... 62
6.4.1. network() source options ... 62

6.5. Collecting messages from named pipes .. 69
6.5.1. pipe() source options ... 70

6.6. Collecting process accounting logs on Linux .. 74
6.6.1. pacct() options ... 74

6.7. Receiving messages from external applications ... 75
6.7.1. program() source options .. 75

6.8. Collecting messages on Sun Solaris .. 79
6.8.1. sun-streams() source options .. 79

6.9. Collecting messages using the IETF syslog protocol .. 82
6.9.1. syslog() source options .. 83

6.10. Collecting the system-specific log messages of a platform .. 90
6.11. Collecting messages from remote hosts using the BSD syslog protocol 92

6.11.1. tcp(), tcp6(), udp() and udp6() source options ... 93
6.12. Collecting messages from UNIX domain sockets .. 100

6.12.1. unix-stream() and unix-dgram() source options ... 101
7. Sending and storing log messages — destinations and destination drivers 107

7.1. Publishing messages using AMQP ... 108
7.1.1. amqp() destination options ... 109

7.2. Storing messages in plain-text files ... 111
7.2.1. file() destination options .. 112

7.3. Storing messages in a MongoDB database .. 118
7.3.1. mongodb() destination options ... 119

7.4. Sending messages to a remote logserver using the RFC3164 protocol .. 121
7.4.1. network() destination options ... 122

ivwww.balabit.com

7.5. Sending messages to named pipes ... 129
7.5.1. pipe() destination options .. 129

7.6. Sending messages to external applications .. 134
7.6.1. program() destination options .. 135

7.7. Generating SMTP messages (e-mail) from logs ... 138
7.7.1. smtp() destination options ... 139

7.8. Storing messages in an SQL database ... 142
7.8.1. Using the sql() driver with an Oracle database .. 143
7.8.2. Using the sql() driver with a Microsoft SQL database .. 145
7.8.3. The way syslog-ng interacts with the database .. 145
7.8.4. sql() destination options ... 147

7.9. Sending messages to a remote logserver using the IETF-syslog protocol 152
7.9.1. syslog() destination options .. 153

7.10. Sending messages to a remote logserver using the legacy BSD-syslog protocol 160
7.10.1. tcp(), tcp6(), udp(), and udp6() destination options .. 161

7.11. Sending messages to UNIX domain sockets ... 167
7.11.1. unix-stream() and unix-dgram() destination options .. 168

7.12. Sending messages to a user terminal — usertty() destination ... 172
8. Routing messages: log paths and filters ... 173

8.1. Log paths ... 173
8.1.1. Embedded log statements .. 174
8.1.2. Junctions and channels .. 176
8.1.3. Log path flags ... 177

8.2. Managing incoming and outgoing messages with flow-control .. 178
8.2.1. Flow-control and multiple destinations .. 181
8.2.2. Configuring flow-control ... 181

8.3. Filters .. 183
8.3.1. Using filters .. 183
8.3.2. Combining filters with boolean operators .. 183
8.3.3. Comparing macro values in filters ... 184
8.3.4. Using wildcards, special characters, and regular expressions in filters 185
8.3.5. Tagging messages .. 186
8.3.6. Filter functions ... 186

8.4. Dropping messages ... 190
9. Global options of syslog-ng OSE .. 191

9.1. Configuring global syslog-ng options ... 191
9.2. Global options .. 191

10. TLS-encrypted message transfer .. 202
10.1. Secure logging using TLS ... 202
10.2. Encrypting log messages with TLS .. 203

10.2.1. Configuring TLS on the syslog-ng clients ... 203
10.2.2. Configuring TLS on the syslog-ng server ... 204

10.3. Mutual authentication using TLS ... 205
10.3.1. Configuring TLS on the syslog-ng clients ... 205
10.3.2. Configuring TLS on the syslog-ng server ... 207

10.4. TLS options .. 208
11. Manipulating messages .. 211

11.1. Customizing message format .. 211

vwww.balabit.com

11.1.1. Formatting messages, filenames, directories, and tablenames .. 211
11.1.2. Templates and macros ... 212
11.1.3. Date-related macros .. 213
11.1.4. Hard vs. soft macros .. 213
11.1.5. Macros of syslog-ng OSE ... 214
11.1.6. Using template functions ... 220
11.1.7. Template functions of syslog-ng OSE .. 220

11.2. Modifying messages ... 226
11.2.1. Replacing message parts ... 227
11.2.2. Setting message fields to specific values ... 228
11.2.3. Creating custom SDATA fields ... 228
11.2.4. Conditional rewrites .. 229
11.2.5. Adding and deleting tags .. 229

11.3. Regular expressions .. 230
11.3.1. Types and options of regular expressions ... 231
11.3.2. Optimizing regular expressions ... 232

12. Parsing and segmenting structured messages .. 233
12.1. Parsing syslog messages .. 233
12.2. Parsing messages ... 234

12.2.1. Options of CSV parsers ... 235
12.3. The JSON parser ... 237

13. Processing message content with a pattern database ... 240
13.1. Classifying log messages ... 240

13.1.1. The structure of the pattern database .. 241
13.1.2. How pattern matching works .. 242
13.1.3. Artificial ignorance .. 242

13.2. Using pattern databases .. 243
13.2.1. Using parser results in filters and templates .. 244
13.2.2. Downloading sample pattern databases .. 245

13.3. Correlating log messages .. 246
13.3.1. Referencing earlier messages of the context .. 247

13.4. Triggering actions for identified messages ... 247
13.4.1. Conditional actions .. 249
13.4.2. External actions .. 249
13.4.3. Actions and message correlation ... 250

13.5. Creating pattern databases .. 250
13.5.1. Using pattern parsers ... 250
13.5.2. What's new in the syslog-ng pattern database format V4 .. 253
13.5.3. The syslog-ng pattern database format ... 253

14. Statistics of syslog-ng ... 261
15. Multithreading and scaling in syslog-ng OSE .. 264

15.1. Multithreading concepts of syslog-ng OSE ... 264
15.2. Configuring multithreading ... 265
15.3. Optimizing multithreaded performance .. 265

16. Troubleshooting syslog-ng ... 267
16.1. Possible causes of losing log messages .. 267
16.2. Creating syslog-ng core files .. 268
16.3. Collecting debugging information with strace, truss, or tusc .. 268

viwww.balabit.com

16.4. Running a failure script ... 269
16.5. Stopping syslog-ng ... 269

17. Best practices and examples .. 270
17.1. General recommendations .. 270
17.2. Handling lots of parallel connections ... 270
17.3. Handling large message load ... 271
17.4. Using name resolution in syslog-ng .. 271

17.4.1. Resolving hostnames locally ... 272
17.5. Collecting logs from chroot .. 272

Appendix 1. The syslog-ng manual pages .. 274
loggen .. 275
pdbtool .. 279
syslog-ng .. 285
syslog-ng.conf ... 288
syslog-ng-ctl .. 294

Appendix 2. GNU General Public License .. 297
2.1. Preamble .. 297
2.2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
.. 298

2.2.1. Section 0 .. 298
2.2.2. Section 1 .. 298
2.2.3. Section 2 .. 298
2.2.4. Section 3 .. 299
2.2.5. Section 4 .. 299
2.2.6. Section 5 .. 300
2.2.7. Section 6 .. 300
2.2.8. Section 7 .. 300
2.2.9. Section 8 .. 300
2.2.10. Section 9 .. 301
2.2.11. Section 10 .. 301
2.2.12. NO WARRANTY Section 11 ... 301
2.2.13. Section 12 .. 301

2.3. How to Apply These Terms to Your New Programs ... 301
Appendix 3. GNU Lesser General Public License ... 303

3.1. Preamble .. 303
3.2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
.. 304

3.2.1. Section 0 .. 304
3.2.2. Section 1 .. 305
3.2.3. Section 2 .. 305
3.2.4. Section 3 .. 306
3.2.5. Section 4 .. 306
3.2.6. Section 5 .. 306
3.2.7. Section 6 .. 307
3.2.8. Section 7 .. 308
3.2.9. Section 8 .. 308
3.2.10. Section 9 .. 308
3.2.11. Section 10 .. 308

viiwww.balabit.com

3.2.12. Section 11 .. 308
3.2.13. Section 12 .. 309
3.2.14. Section 13 .. 309
3.2.15. Section 14 .. 309
3.2.16. NO WARRANTY Section 15 ... 309
3.2.17. Section 16 .. 310

3.3. How to Apply These Terms to Your New Libraries ... 310
Appendix 4. Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd) License
.. 312
Glossary ... 317
List of syslog-ng OSE parameters ... 321
Index ... 327

viiiwww.balabit.com

List of Examples
2.1. Using the value-pairs() option .. 17
2.2. Using the rekey() option ... 23
4.1. The default configuration file of syslog-ng OSE ... 39
4.2. A simple configuration for clients ... 40
4.3. A simple configuration for servers .. 41
4.4. A simple configuration for relays .. 42
5.1. A simple configuration file ... 44
5.2. Using required and optional parameters ... 46
5.3. Using inline definitions .. 47
5.4. Using channels .. 48
5.5. Using global variables .. 49
5.6. Reusing configuration blocks .. 52
5.7. Defining blocks with multiple elements ... 52
5.8. Passing arguments to blocks ... 53
5.9. Using arguments in blocks ... 53
6.1. A simple source statement .. 54
6.2. A source statement using two source drivers .. 54
6.3. Setting default priority and facility ... 54
6.4. Source statement on a Linux based operating system ... 55
6.5. Using the internal() driver .. 56
6.6. Using the file() driver ... 57
6.7. Tailing files ... 57
6.8. Initial window size of a connection ... 60
6.9. Using the network() driver .. 62
6.10. Initial window size of a connection .. 66
6.11. Using the pipe() driver ... 70
6.12. Initial window size of a connection .. 72
6.13. Using the program() driver ... 75
6.14. Initial window size of a connection .. 77
6.15. Using the sun-streams() driver ... 79
6.16. Initial window size of a connection .. 81
6.17. Using the syslog() driver ... 83
6.18. Initial window size of a connection .. 87
6.19. Using the udp() and tcp() drivers ... 93
6.20. Initial window size of a connection .. 97
6.21. Using the unix-stream() and unix-dgram() drivers .. 101
6.22. Initial window size of a connection .. 103
7.1. A simple destination statement .. 107
7.2. Using the amqp() driver .. 108
7.3. Using the file() driver ... 111
7.4. Using the file() driver with macros in the file name and a template for the message 112
7.5. Using the mongodb() driver .. 118
7.6. Using the network() driver .. 122
7.7. Using the pipe() driver ... 129
7.8. Using the program() destination driver ... 134

ixwww.balabit.com

7.9. Using the smtp() driver .. 138
7.10. Simple e-mail alerting with the smtp() driver .. 139
7.11. Using the sql() driver .. 143
7.12. Using the sql() driver with an Oracle database ... 144
7.13. Using the sql() driver with an MSSQL database ... 145
7.14. Setting flags for SQL destinations .. 148
7.15. Using SQL NULL values .. 150
7.16. Value: default .. 152
7.17. Using the syslog() driver ... 153
7.18. Using the tcp() driver ... 161
7.19. Using the unix-stream() driver ... 168
7.20. Using the usertty() driver .. 172
8.1. A simple log statement ... 173
8.2. Using embedded log paths .. 176
8.3. Using junctions ... 177
8.4. Using log path flags ... 178
8.5. Soft flow-control ... 181
8.6. Hard flow-control ... 181
8.7. Sizing parameters for flow-control ... 182
8.8. A simple filter statement .. 183
8.9. Comparing macro values in filters ... 185
8.10. Filtering with widcards ... 186
8.11. Adding tags and filtering messages with tags ... 190
8.12. Skipping messages ... 190
9.1. Using global options .. 191
10.1. A destination statement using TLS ... 203
10.2. A source statement using TLS ... 204
10.3. Disabling mutual authentication .. 205
10.4. A destination statement using mutual authentication .. 206
10.5. A source statement using TLS ... 207
11.1. Using templates and macros .. 213
11.2. Using SDATA macros .. 218
11.3. Using the format-json template function .. 221
11.4. Using the grep template function ... 222
11.5. Using the $(hash) template function ... 222
11.6. Using pattern databases and the if template function ... 223
11.7. Using the indent-multi-line template function ... 223
11.8. Using the sanitize template function .. 225
11.9. Using the substr template function .. 225
11.10. Using Universally Unique Identifiers .. 226
11.11. Using substitution rules .. 228
11.12. Setting message fields to a particular value .. 228
11.13. Rewriting custom SDATA fields .. 229
11.14. Using conditional rewriting ... 229
11.15. Using Posix regular expressions ... 231
11.16. Using PCRE regular expressions .. 232
11.17. Optimizing regular expressions in filters ... 232
12.1. Using junctions ... 233

xwww.balabit.com

12.2. Segmenting hostnames separated with a dash .. 234
12.3. Parsing Apache log files .. 234
12.4. Segmenting a part of a message ... 235
12.5. Adding the end of the message to the last column ... 237
12.6. Using a JSON parser .. 238
12.7. Using the marker option in JSON parser .. 238
13.1. Defining pattern databases .. 243
13.2. Using classification results .. 244
13.3. Using classification results for filtering messages ... 244
13.4. Using pattern parsers as macros .. 245
13.5. How syslog-ng OSE calculates context-timeout .. 247
13.6. Using message correlation .. 247
13.7. Sending triggered messages to the internal() source ... 248
13.8. Generating messages for pattern database matches .. 248
13.9. Generating messages with inherited values .. 248
13.10. Actions based on the number of messages .. 249
13.11. Sending triggered messages to external applications ... 249
13.12. Pattern parser syntax .. 251
13.13. Using the STRING and ESTRING parsers ... 251
13.14. A V4 pattern database containing a single rule ... 259
15.1. Enabling multithreading ... 265
1.1. Using required and optional parameters ... 289
1.2. Using global options .. 290

xiwww.balabit.com

List of Procedures
2.2.1. The route of a log message in syslog-ng .. 4
3.1. Compiling syslog-ng from source .. 28
3.3. Configuring Microsoft SQL Server to accept logs from syslog-ng ... 31
4.1. Configuring syslog-ng on client hosts .. 38
4.2. Configuring syslog-ng on server hosts ... 40
4.3.1. Configuring syslog-ng on relay hosts ... 41
10.2.1. Configuring TLS on the syslog-ng clients ... 203
10.2.2. Configuring TLS on the syslog-ng server ... 204
10.3.1. Configuring TLS on the syslog-ng clients ... 205
10.3.2. Configuring TLS on the syslog-ng server ... 207
16.2. Creating syslog-ng core files .. 268
17.4.1. Resolving hostnames locally ... 272
17.5. Collecting logs from chroot .. 272

xiiwww.balabit.com

Preface

Welcome to the syslog-ng Open Source Edition 3.4 Administrator Guide!

This document describes how to configure and manage syslog-ng. Background information for the technology and
concepts used by the product is also discussed.

1. Summary of contents

Chapter 1, Introduction to syslog-ng (p. 1) describes the main functionality and purpose of syslog-ng OSE.

Chapter 2, The concepts of syslog-ng (p. 4) discusses the technical concepts and philosophies behind syslog-ng OSE.

Chapter 3, Installing syslog-ng (p. 28) describes how to install syslog-ng OSE on various UNIX-based platforms using
the precompiled binaries.

Chapter 4, The syslog-ng OSE quick-start guide (p. 38) provides a briefly explains how to perform the most common
log collecting tasks with syslog-ng OSE.

Chapter 5, The syslog-ng OSE configuration file (p. 44) discusses the configuration file format and syntax in detail, and
explains how to manage large-scale configurations using included files and reusable configuration snippets.

Chapter 6, Collecting log messages — sources and source drivers (p. 54) explains how to collect and receive log messages
from various sources.

Chapter 7, Sending and storing log messages — destinations and destination drivers (p. 107) describes the different methods to
store and forward log messages.

Chapter 8, Routing messages: log paths and filters (p. 173) explains how to route and sort log messages, and how to use
filters to select specific messages.

Chapter 9, Global options of syslog-ng OSE (p. 191) lists the global options of syslog-ng OSE and explains how to use
them.

Chapter 10, TLS-encrypted message transfer (p. 202) shows how to secure and authenticate log transport using TLS
encryption.

Chapter 11, Manipulating messages (p. 211) describes how to customize message format using templates and macros,
how to rewrite and modify messages, and how to use regular expressions.

Chapter 12, Parsing and segmenting structured messages (p. 233) describes how to segment and process structured messages
like comma-separated values.

Chapter 13, Processing message content with a pattern database (p. 240) explains how to identify and process log messages
using a pattern database.

Chapter 14, Statistics of syslog-ng (p. 261) details the available statistics that syslog-ng OSE collects about the processed
log messages.

xiiiwww.balabit.com

Summary of contents

Chapter 15, Multithreading and scaling in syslog-ng OSE (p. 264) describes how to configure syslog-ng OSE to use multiple
processors, and how to optimize its performance.

Chapter 16, Troubleshooting syslog-ng (p. 267) offers tips to solving problems.

Chapter 17, Best practices and examples (p. 270) gives recommendations to configure special features of syslog-ng.

Appendix 1, The syslog-ng manual pages (p. 274) contains the manual pages of the syslog-ng OSE application.

Appendix 3, GNU Lesser General Public License (p. 303) includes the text of the LGPLv2.1 license applicable to the
core of syslog-ng Open Source Edition.

Appendix 2, GNU General Public License (p. 297) includes the text of the GPLv2 license applicable to syslog-ng Open
Source Edition.

Appendix 4, Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd) License (p. 312) includes the text of the
Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd) License applicable to The syslog-ng
Open Source Edition 3.4 Administrator Guide.

Glossary (p. 317) provides definitions of important terms used in this guide.

List of syslog-ng OSE parameters (p. 321) provides cross-references to the definitions of options, parameters, and macros
available in syslog-ng OSE.

The Index provides cross-references to important terms used in this guide.

2. Target audience and prerequisites

This guide is intended for system administrators and consultants responsible for designing and maintaining logging
solutions and log centers. It is also useful for IT decision makers looking for a tool to implement centralized logging
in heterogeneous environments.

The following skills and knowledge are necessary for a successful syslog-ng administrator:

■ At least basic system administration knowledge.

■ An understanding of networks, TCP/IP protocols, and general network terminology.

■ Working knowledge of the UNIX or Linux operating system.

■ In-depth knowledge of the logging process of various platforms and applications.

■ An understanding of the legacy syslog (BSD-syslog) protocol) and the new syslog (IETF-syslog) protocol) standard.

3. Products covered in this guide

This guide describes the use of the following products:

■ syslog-ng Open Source Edition (syslog-ng OSE) 3.4.1 and later

xivwww.balabit.com

Target audience and prerequisites

http://www.ietf.org/rfc/rfc3164.txt
http://tools.ietf.org/html/rfc5424

4. Typographical conventions

Before you start using this guide, it is important to understand the terms and typographical conventions used in
the documentation. For more information on specialized terms and abbreviations used in the documentation, see
the Glossary at the end of this document.

The following kinds of text formatting and icons identify special information in the document.

Tip
Tips provide best practices and recommendations.

Note
Notes provide additional information on a topic, and emphasize important facts and considerations.

Warning
Warnings mark situations where loss of data or misconfiguration of the device is possible if the instructions are not obeyed.

Command Commands you have to execute.

Emphasis Reference items, additional readings.

/path/to/file File names.

Parameters Parameter and attribute names.

Label GUI output messages or dialog labels.

Menu A submenu or menu item in the menu bar.

Button Buttons in dialog windows.

5. Contact and support information

This product is developed and maintained by BalaBit IT Security Ltd. We are located in Budapest, Hungary. Our
address is:

BalaBit IT Security Ltd.
2 Alíz Street
H-1117 Budapest, Hungary
Tel: +36 1 398-6700
Fax: +36 1 208-0875
E-mail: <info@balabit.com>

xvwww.balabit.com

Typographical conventions

Web: http://www.balabit.com/

5.1. Sales contact

You can directly contact us with sales related topics at the e-mail address <sales@balabit.com>, or leave us your
contact information and we call you back.

5.2. Support contact

In case you experience a problem that is not covered in this guide, visit the syslog-ng wiki or post it on syslog-ng mailing
list.

To report bugs found in syslog-ng OSE, visit this page.

Precompiled binary packages are available for free from various third-parties. Most of these are listed on the syslog-ng
website.

Note
BalaBit offers a Premium Edition of syslog-ng and a log management appliance syslog-ng Store Box for which professional
support is available. For more information on which syslog-ng product version meets your needs contact our sales department
at <sales@balabit.com>.

For other products of BalaBit visit http://www.balabit.com/.

5.3. Training

BalaBit IT Security Ltd. holds courses on using its products for new and experienced users. For dates, details, and
application forms, visit the http://www.balabit.com/support/trainings/ webpage.

6. About this document

This guide is a work-in-progress document with new versions appearing periodically.

The latest version of this document can be downloaded from the BalaBit website here.

6.1. Summary of changes

This section lists the changes of The syslog-ng Open Source Edition Administrator Guide.

6.1.1. Version 3.3 - 3.4

Changes in product:

■ New configuration objects called junctions and channels are available to improve the flexibility of
configuring syslog-ng OSE. For details, see Section 8.1.2, Junctions and channels (p. 176) and Section 5.5, Using
channels in configuration objects (p. 47).

xviwww.balabit.com

Sales contact

http://www.balabit.com/
http://www.balabit.com/support/callback?product=
http://www.balabit.com/support/callback?product=
http://www.balabit.com/wiki/syslog-ng-faq
https://lists.balabit.hu/mailman/listinfo/syslog-ng/
https://lists.balabit.hu/mailman/listinfo/syslog-ng/
https://bugzilla.balabit.com/
http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/downloads/3rd_party/
http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/downloads/3rd_party/
http://www.balabit.com/support/trainings/
http://www.balabit.com/support/documentation/

■ syslog-ng OSE can publish messages using the AMQP (Advanced Message Queuing Protocol). For
details, see Section 7.1, Publishing messages using AMQP (p. 108).

■ The tcp, tcp6, udp, and udp6 drivers have been merged into a single network() driver. For
details, see Section 6.4, Collecting messages using the RFC3164 protocol (p. 62) and Section 7.4, Sending messages
to a remote logserver using the RFC3164 protocol (p. 121).

■ The tcp, tcp6, syslog, and network source and destination drivers support the new
tcp-keepalive-time(), tcp-keepalive-probes(), and tcp-keepalive-intvl() options.
For details, see respective source and driver descriptions, for example, Section 6.9.1, syslog() source
options (p. 83).

■ Objects can be defined inline as well. This is useful if you use the object only once (for example, a filter).
For details, see Section 5.4, Defining configuration objects inline (p. 47).

■ The mongodb() destination supports using replicasets, sockets, and safe-mode. For details, see Section
servers() (p. 121), Section path() (p. 120), and Section safe-mode() (p. 120), respectively.

■ The value-pairs() option can modify the names of the value-pairs using the rekey option. For
details, see Section value-pairs() (p. 17).

■ A new parser is available to explicitly parse messages as syslog messages. For details, see Section 12.1,
Parsing syslog messages (p. 233).

■ A new parser is available to parse JSON-formatted messages. For details, see Section 12.3, The JSON
parser (p. 237).

■ The following new macros are available in Section 11.1.5, Macros of syslog-ng OSE (p. 214): AMPM, HOUR12,
LOGHOST, MSEC, SYSUPTIME, USEC.

■ The following new template functions are available in Section 11.1.7, Template functions of syslog-ng
OSE (p. 220): GEOIP, LENGTH, STRIP, SUBSTR, TFHASH, UUID, and functions for various
numerical operations.

■ The following new parsers are available in Section 13.5.1, Using pattern parsers (p. 250): @EMAIL@,
@HOSTNAME@, @MACADDR@, @LLADDR@, @PCRE@, @SET@.

■ Actions triggered from the pattern database can use the number of messages as a condition. For details,
see Section 13.4.1, Conditional actions (p. 249).

■ Messages triggered from the pattern database can inherit the properties of the original message. For
details, see Example 13.8, Generating messages for pattern database matches (p. 248).

■ Tags can be added and deleted using rewrite rules. For details, see Section 11.2.5, Adding and deleting
tags (p. 229).

■ The file-template() and proto-template() global options have been documented. For details,
see Section file-template() (p. 193) and Section proto-template() (p. 197), respectively.

■ The dbd-option() and session-statements() options are available for the sql() driver. For
details, see Section dbd-option() (p. 147) and Section session-statements() (p. 151).

■ The tags and name-value pairs set in a pattern database file can be listed using the pdbtool dictionary
command. For details, see the section called “The dictionary command” (p. 279).

■ The expect-hostname source flag has been documented.

■ The --caps command-line option has been documented. For details, see syslog-ng(8) (p. 285).

■ The reload option is available for the syslog-ng-ctl utility. For details, see syslog-ng-ctl(1) (p. 294).

xviiwww.balabit.com

Summary of changes

■ Wildcards can be used to include multiple configuration files. For details, see Section 5.8.1, Including
configuration files (p. 50).

■ Section 7.7, Generating SMTP messages (e-mail) from logs (p. 138) has been added to the document.

Changes in documentation:

■ Updated the documentation of the system() source in Section 6.10, Collecting the system-specific log messages
of a platform (p. 90).

■ Section 13.4, Triggering actions for identified messages (p. 247) has been split into several subsections.

■ Documented several missing pdbtool options in Appendix 1, The syslog-ng manual pages (p. 274).

■ The --without-compile-date compiling option has been documented in Procedure 3.1, Compiling
syslog-ng from source (p. 28).

■ The description of the tags() option has been added to Section 6.2.1, internal() source options (p. 57).

■ Links and compiling option descriptions have been updated in Procedure 3.1, Compiling syslog-ng from
source (p. 28).

■ Section retry_sql_inserts (p. 151) has been added to the document.

■ A few notes regarding kernel messages and file sources have been reorganized to Section 6.3.1, Notes on
reading kernel messages (p. 57).

■ Clarified the use of double-quotes and special characters in Section 11.3, Regular expressions (p. 230).

■ Added a note about unsupported column types to Section 7.8.2, Using the sql() driver with a Microsoft SQL
database (p. 145).

■ The maximal number of worker-threads has been clarified in Chapter 15, Multithreading and scaling in
syslog-ng OSE (p. 264).

■ Corrected a note about persistent message contexts in Section 13.3, Correlating log messages (p. 246).

■ Clarifications in Section 7.8.1, Using the sql() driver with an Oracle database (p. 143).

■ A description of the BOM character has been added to BOM (p. 317).

■ The description of the delimiter option of csv-parser() has been clarified. For details, see Section
delimiters (p. 236).

■ Missing facility names have been added to Section facility() (p. 187).

■ The description of the chain_hostnames global option has been extended. For details, see Section
chain_hostnames() (p. 191).

■ The descriptions of statistics types have been clarified in Chapter 14, Statistics of syslog-ng (p. 261).

■ The description of pipe() has been clarified.

■ The manual pages of syslog-ng Open Source Edition have been relicensed under the GPLv2+ license.
See Appendix 1, The syslog-ng manual pages (p. 274) for details.

■ Information about chrooting syslog-ng has been corrected in the syslog-ng.8 manual page. See
syslog-ng(8) (p. 285) for details.

■ The example of Section format-json (p. 220) has been expanded and corrected.

■ Lots of other corrections and clarifications.

xviiiwww.balabit.com

Summary of changes

6.1.2. Version 3.2 - 3.3

Changes in product:

■ Added the missing MSGID to the list of macros in Section 11.1.5, Macros of syslog-ng OSE (p. 214).

■ Added two new compiling options: --with-module-dir and --with-module-path in Procedure 3.1, Compiling
syslog-ng from source (p. 28).

■ Procedure 3.1, Compiling syslog-ng from source (p. 28) has been updated to cover the new compiling options.

■ Section 5.7.1, Loading modules (p. 50) has been added to the document.

■ Section 7.3, Storing messages in a MongoDB database (p. 118) has been added to the document.

■ Section format-json (p. 220) has been added to the document.

■ Chapter 15, Multithreading and scaling in syslog-ng OSE (p. 264) has been added to the document.

■ The cipher_suite() option has been added to Section 10.4, TLS options (p. 208).

Changes in documentation:

■ Section 2.8.4, Structuring macros, metadata, and other value-pairs (p. 16) has been added to the document.

■ Several minor editorial changes, clarifications, typo corrections.

■ Clarifications in Section 2.5, Timezones and daylight saving (p. 8).

■ Sections Section 2.8.3, Message representation in syslog-ng OSE (p. 15) and Section 11.1.4, Hard vs. soft
macros (p. 213) have been added to the document.

■ Procedures have been restructured to facilitate easier understanding.

■ Latin abbreviations have been replaced in document with their English equivalents.

■ Links to sections in the document have been harmonized.

■ Links to external web pages have been clarified.

■ Added a note about the statistics of messages with high facility numbers to Chapter 14, Statistics of
syslog-ng (p. 261).

■ The description of the dir_perm() option of file destinations has been clarified.

■ The description of the time_reap() option has been added to Section 7.2.1, file() destination options (p. 112).

■ The descriptions of facility and priority values used by the internal() source has been added to Section
6.2, Collecting internal messages (p. 56).

■ The description of the pad-size() option has been clarified in Section 6.3.2, file() source options (p. 58).

■ The description of the port() option has been added to Section 7.8, Storing messages in an SQL
database (p. 142).

■ The working of the SQL destination driver has been clarified.

■ The description of the pad_size() option has been added to Section 7.2.1, file() destination options (p. 112)
and Section 7.5.1, pipe() destination options (p. 129).

■ The handling of IETF-syslog messages has been clarified in Section 2.8.2, IETF-syslog messages (p. 12).

■ Documented that multiple configuration files can be included from a directory in Section 5.8.1, Including
configuration files (p. 50).

xixwww.balabit.com

Summary of changes

■ The syntax of the configuration file has been clarified in Section 5.8.1, Including configuration files (p. 50).

■ The follow_freq() option has been removed from Section 6.12.1, unix-stream() and unix-dgram() source
options (p. 101).

■ The optional() option has been removed from Section 6.9.1, syslog() source options (p. 83).

■ The ip_tos(), ip_ttl(), so_broadcast(), so_sndbuf(), follow_freq() options
have been removed from Section 6.11.1, tcp(), tcp6(), udp() and udp6() source options (p. 93).

■ The so-broadcast(), so-sndbuf() options have been removed from Section 6.12.1, unix-stream()
and unix-dgram() source options (p. 101).

6.2. Feedback

Any feedback is greatly appreciated, especially on what else this document should cover. General comments, errors
found in the text, and any suggestions about how to improve the documentation is welcome at
documentation@balabit.com.

6.3. Acknowledgments

BalaBit would like to express its gratitude to the syslog-ng users and the syslog-ng community for their invaluable
help and support, including the community members listed at syslog-ng Community Page.

xxwww.balabit.com

Feedback

http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/community/contribution/

Chapter 1. Introduction to syslog-ng

This chapter introduces the syslog-ng Open Source Edition application in a non-technical manner, discussing how
and why is it useful, and the benefits it offers to an existing IT infrastructure.

1.1. What syslog-ng is

The syslog-ng application is a flexible and highly scalable system logging application that is ideal for creating
centralized and trusted logging solutions. The main features of syslog-ng are summarized below.

■ Reliable log transfer: The syslog-ng application enables you to send the log messages of your hosts to remote
servers using the latest protocol standards. The logs of different servers can be collected and stored
centrally on dedicated log servers. Transferring log messages using the TCP protocol ensures that no
messages are lost.

■ Secure logging using TLS: Log messages may contain sensitive information that should not be accessed by
third parties. Therefore, syslog-ng supports the Transport Layer Security (TLS) protocol to encrypt the
communication. TLS also allows the mutual authentication of the host and the server using X.509
certificates.

■ Direct database access: Storing your log messages in a database allows you to easily search and query the
messages and interoperate with log analyzing applications. The syslog-ng application supports the
following databases: MSSQL, MySQL, Oracle, PostgreSQL, and SQLite.

■ Heterogeneous environments: The syslog-ng application is the ideal choice to collect logs in massively
heterogeneous environments using several different operating systems and hardware platforms, including
Linux, Unix, BSD, Sun Solaris, HP-UX, Tru64, and AIX.

■ Filter and classify: The syslog-ng application can sort the incoming log messages based on their content
and various parameters like the source host, application, and priority. Directories, files, and database
tables can be created dynamically using macros. Complex filtering using regular expressions and boolean
operators offers almost unlimited flexibility to forward only the important log messages to the selected
destinations.

■ Parse and rewrite: The syslog-ng application can segment log messages to named fields or columns, and
also modify the values of these fields.

■ IPv4 and IPv6 support: The syslog-ng application can operate in both IPv4 and IPv6 network environments;
it can receive and send messages to both types of networks.

1.2. What syslog-ng is not

The syslog-ng application is not log analysis software. It can filter log messages and select only the ones matching
certain criteria. It can even convert the messages and restructure them to a predefined format, or parse the messages
and segment them into different fields. But syslog-ng cannot interpret and analyze the meaning behind the messages,
or recognize patterns in the occurrence of different messages.

1www.balabit.com

What syslog-ng is

1.3. Why is syslog-ng needed?

Log messages contain information about the events happening on the hosts. Monitoring system events is essential
for security and system health monitoring reasons.

The original syslog protocol separates messages based on the priority of the message and the facility sending the
message. These two parameters alone are often inadequate to consistently classify messages, as many applications
might use the same facility — and the facility itself is not even included in the log message. To make things worse,
many log messages contain unimportant information. The syslog-ng application helps you to select only the really
interesting messages, and forward them to a central server.

Company policies or other regulations often require log messages to be archived. Storing the important messages
in a central location greatly simplifies this process.

For details on how can you use syslog-ng to comply with various regulations, see the Regulatory compliance and system
logging whitepaper available here

1.4. What is new in syslog-ng Open Source Edition 3.4?

Version 3.4 of syslog-ng Open Source Edition includes the following main features:

■ New configuration objects called junctions and channels are available to improve the flexibility of
configuring syslog-ng OSE. For details, see Section 8.1.2, Junctions and channels (p. 176) and Section 5.5, Using
channels in configuration objects (p. 47).

■ syslog-ng OSE can publish messages using the AMQP (Advanced Message Queuing Protocol). For
details, see Section 7.1, Publishing messages using AMQP (p. 108).

■ Objects can be defined inline as well. This is useful if you use the object only once (for example, a filter).
For details, see Section 5.4, Defining configuration objects inline (p. 47).

■ Starting with version 3.4, syslog-ng OSE can natively send out e-mails, for example, to use as alerts. For
details, see Section 7.7, Generating SMTP messages (e-mail) from logs (p. 138).

■ A new parser is available to parse JSON-formatted messages. For details, see Section 12.3, The JSON
parser (p. 237).

■ The following new macros are available: AMPM, HOUR12, MSEC, SYSUPTIME, USEC. For details,
see Section 11.1.5, Macros of syslog-ng OSE (p. 214).

■ A new set of date-related macros is available that resolves to the date when the message is processed.
For details, see Section 11.1.3, Date-related macros (p. 213).

■ The following new template functions are available in Section 11.1.7, Template functions of syslog-ng
OSE (p. 220): GEOIP, LENGTH, STRIP, SUBSTR, TFHASH, UUID, and functions for various
numerical operations.

■ The operation of MARK messages has been reworked. For details, see Section mark_mode() (p. 196).

■ For complete list of changes in syslog-ng OSE 3.4 and in The syslog-ng Open Source Edition 3.4
Administrator Guide, see Section 6.1.1, Version 3.3 - 3.4 (p. xvi).

2www.balabit.com

Why is syslog-ng needed?

http://www.balabit.com/support/documentation/

1.5. Who uses syslog-ng?

The syslog-ng application is used worldwide by companies and institutions who collect and manage the logs of
several hosts, and want to store them in a centralized, organized way. Using syslog-ng is particularly advantageous
for:

■ Internet Service Providers;

■ Financial institutions and companies requiring policy compliance;

■ Server, web, and application hosting companies;

■ Datacenters;

■ Wide area network (WAN) operators;

■ Server farm administrators.

The following is a list of public references — companies who use syslog-ng in their production environment:

■ Allianz Hungary Insurance Co.

■ Navisite Inc.

■ Svenska Handelsbanken AB

■ Swedish National Debt Office

1.6. Supported platforms

The syslog-ng Open Source Edition application is highly portable and is known to run on a wide range of hardware
architectures (x86, x86_64, SUN Sparc, PowerPC 32 and 64, Alpha) and operating systems, including Linux, BSD,
Solaris, IBM AIX, HP-UX, Mac OS X, Cygwin, Tru64, and others.

■ The source code of syslog-ng Open Source Edition is released under the GPLv2 license and is available
here.

■ Precompiled binary packages provided by BalaBit are available for free for the supported Linux and BSD
platforms here.

■ For syslog-ng Open Source Edition packages for Solaris 8-10, visit this page

■ For syslog-ng Open Source Edition packages for IBM AIX 5 and later, visit this page

■ For syslog-ng Open Source Edition packages for HP-UX, visit this page

■ For syslog-ng Open Source Edition packages for Mac OS X, visit this page

■ Packages for routers running OpenWRT or a similar embedded Linux distribution are available here

3www.balabit.com

Who uses syslog-ng?

http://www.allianz.hu/
http://www.navisite.com/
http://www.handelsbanken.com/
http://www.riksgalden.se
http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/upgrades/#any
http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/upgrades/#any
http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/upgrades/
http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/upgrades/
http://www.sunfreeware.com/
http://www.perzl.org/aix/index.php?n=Main.Syslog-ng
http://hpux.connect.org.uk/hppd/cgi-bin/search?package=on&description=on&term=syslog-ng&Search=Search
http://syslog-ng.darwinports.com/
http://www.openwrt.org/

Chapter 2. The concepts of syslog-ng

This chapter discusses the technical concepts of syslog-ng.

2.1. The philosophy of syslog-ng

Typically, syslog-ng is used to manage log messages and implement centralized logging, where the aim is to collect
the log messages of several devices on a single, central log server. The different devices — called syslog-ng clients
— all run syslog-ng, and collect the log messages from the various applications, files, and other sources. The clients
send all important log messages to the remote syslog-ng server, where the server sorts and stores them.

2.2. Logging with syslog-ng

The syslog-ng application reads incoming messages and forwards them to the selected destinations. The syslog-ng
application can receive messages from files, remote hosts, and other sources.

Log messages enter syslog-ng in one of the defined sources, and are sent to one or more destinations.

Sources and destinations are independent objects; log paths define what syslog-ng does with a message, connecting
the sources to the destinations. A log path consists of one or more sources and one or more destinations; messages
arriving from a source are sent to every destination listed in the log path. A log path defined in syslog-ng is called
a log statement.

Optionally, log paths can include filters. Filters are rules that select only certain messages, for example, selecting only
messages sent by a specific application. If a log path includes filters, syslog-ng sends only the messages satisfying
the filter rules to the destinations set in the log path.

Other optional elements that can appear in log statements are parsers and rewriting rules. Parsers segment messages
into different fields to help processing the messages, while rewrite rules modify the messages by adding, replacing,
or removing parts of the messages.

2.2.1. Procedure – The route of a log message in syslog-ng

Purpose:

The following procedure illustrates the route of a log message from its source on the syslog-ng client to its final
destination on the central syslog-ng server.

4www.balabit.com

The philosophy of syslog-ng

Figure 2.1. The route of a log message

Steps:

Step 1. A device or application sends a log message to a source on the syslog-ng client. For example, an Apache
web server running on Linux enters a message into the /var/log/apache file.

Step 2. The syslog-ng client running on the web server reads the message from its /var/log/apache source.

Step 3. The syslog-ng client processes the first log statement that includes the /var/log/apache source.

Step 4. The syslog-ng client performs optional operations (message filtering, parsing, and rewriting) on the message;
for example, it compares the message to the filters of the log statement (if any). If the message complies
with all filter rules, syslog-ng sends the message to the destinations set in the log statement, for example,
to the remote syslog-ng server.

Warning
Message filtering, parsing, and rewriting is performed in the order that the operations appear in the log statement.

Note
The syslog-ng client sends a message to all matching destinations by default. As a result, a message may be sent
to a destination more than once, if the destination is used in multiple log statements. To prevent such situations,
use the final flag in the destination statements. For details, see Table 8.1, Log statement flags (p. 177).

5www.balabit.com

Logging with syslog-ng

Step 5. The syslog-ng client processes the next log statement that includes the /var/log/apache source, repeating
Steps 3-4.

Step 6. The message sent by the syslog-ng client arrives from a source set in the syslog-ng server.

Step 7. The syslog-ng server reads the message from its source and processes the first log statement that includes
that source.

Step 8. The syslog-ng server performs optional operations (message filtering, parsing, and rewriting) on the message;
for example, it compares the message to the filters of the log statement (if any). If the message complies
with all filter rules, syslog-ng sends the message to the destinations set in the log statement.

Warning
Message filtering, parsing, and rewriting is performed in the order that the operations appear in the log statement.

Step 9. The syslog-ng server processes the next log statement, repeating Steps 7-9.

Note
The syslog-ng application can stop reading messages from its sources if the destinations cannot process the sent
messages. This feature is called flow-control and is detailed in Section 8.2, Managing incoming and outgoing messages with
flow-control (p. 178).

2.3. Modes of operation

The syslog-ng Open Source Edition application has three typical operation scenarios: Client, Server, and Relay.

2.3.1. Client mode

Figure 2.2. Client-mode operation

In client mode, syslog-ng collects the local logs generated by the host and forwards them through a network
connection to the central syslog-ng server or to a relay. Clients often also log the messages locally into files.

6www.balabit.com

Modes of operation

2.3.2. Relay mode

Figure 2.3. Relay-mode operation

In relay mode, syslog-ng receives logs through the network from syslog-ng clients and forwards them to the central
syslog-ng server using a network connection. Relays also log the messages from the relay host into a local file, or
forward these messages to the central syslog-ng server.

2.3.3. Server mode

Figure 2.4. Server-mode operation

In server mode, syslog-ng acts as a central log-collecting server. It receives messages from syslog-ng clients and
relays over the network, and stores them locally in files, or passes them to other applications, for example log
analyzers.

2.4. Global objects

The syslog-ng application uses the following objects:

■ Source driver: A communication method used to receive log messages. For example, syslog-ng can receive
messages from a remote host via TCP/IP, or read the messages of a local application from a file. For
details on source drivers, see Chapter 6, Collecting log messages — sources and source drivers (p. 54).

7www.balabit.com

Relay mode

■ Source: A named collection of configured source drivers.

■ Destination driver: A communication method used to send log messages. For example, syslog-ng can send
messages to a remote host via TCP/IP, or write the messages into a file or database. For details on
destination drivers, see Chapter 7, Sending and storing log messages — destinations and destination drivers (p. 107).

■ Destination: A named collection of configured destination drivers.

■ Filter: An expression to select messages. For example, a simple filter can select the messages received
from a specific host. For details, see Section 11.1, Customizing message format (p. 211).

■ Macro: An identifier that refers to a part of the log message. For example, the ${HOST} macro returns
the name of the host that sent the message. Macros are often used in templates and filenames. For details,
see Section 11.1, Customizing message format (p. 211).

■ Parser: Parsers are objects that parse the incoming messages, or parts of a message. For example, the
csv-parser() can segment messages into separate columns at a predefined separator character (for
example a comma). Every column has a unique name that can be used as a macro. For details, see Chapter
12, Parsing and segmenting structured messages (p. 233) and Chapter 13, Processing message content with a pattern
database (p. 240).

■ Rewrite rule: A rule modifies a part of the message, for example, replaces a string, or sets a field to a
specified value. For details, see Section 11.2, Modifying messages (p. 226).

■ Log paths: A combination of sources, destinations, and other objects like filters, parsers, and rewrite rules.
The syslog-ng application sends messages arriving from the sources of the log paths to the defined
destinations, and performs filtering, parsing, and rewriting of the messages. Log paths are also called
log statements. Log statements can include other (embedded) log statements and junctions to create
complex log paths. For details, see Chapter 8, Routing messages: log paths and filters (p. 173).

■ Template: A template is a set of macros that can be used to restructure log messages or automatically
generate file names. For example, a template can add the hostname and the date to the beginning of
every log message. For details, see Section 11.1, Customizing message format (p. 211).

■ Option: Options set global parameters of syslog-ng, like the parameters of name resolution and timezone
handling. For details, see Chapter 9, Global options of syslog-ng OSE (p. 191).

For details on the above objects, see Section 5.2, The configuration syntax in detail (p. 44).

2.5. Timezones and daylight saving

The syslog-ng application receives the timezone and daylight saving information from the operating system it is
installed on. If the operating system handles daylight saving correctly, so does syslog-ng.

The syslog-ng application supports messages originating from different timezones. The original syslog protocol
(RFC3164) does not include timezone information, but syslog-ng provides a solution by extending the syslog

8www.balabit.com

Timezones and daylight saving

protocol to include the timezone in the log messages. The syslog-ng application also enables administrators to
supply timezone information for legacy devices which do not support the protocol extension.

Timezone information is associated with messages entering syslog-ng is selected using the following algorithm:

Step 1. The sender application (for example the syslog-ng client) or host specifies the timezone of the messages.
If the incoming message includes a timezone it is associated with the message. Otherwise, the local timezone
is assumed.

Step 2. Specify the time_zone() parameter for the source driver that reads the message. This timezone will be
associated with the messages only if no timezone is specified within the message itself. Each source defaults
to the value of the recv_time_zone() global option. It is not possible to override only the timezone
information of the incoming message; but setting the keep-timestamp() option to no allows syslog-ng
OSE to replace the full timestamp (timezone included) with the time the message was received.

Note
When processing a message that does not contain timezone information, the syslog-ng OSE application will use
the timezone and daylight-saving that was effective when the timestamp was generated. For example, the current
time is 2011-03-11 (March 11, 2011) in the EU/Budapest timezone. When daylight-saving is active
(summertime), the offset is +02:00. When daylight-saving is inactive (wintertime) the timezone offset is +01:00.
If the timestamp of an incoming message is 2011-01-01, the timezone associated with the message will be
+01:00, but the timestamp will be converted, because 2011-01-01 meant winter time when daylight saving is not
active but the current timezone is +02:00.

Step 3. Specify the timezone in the destination driver using the time_zone() parameter. Each destination driver
might have an associated timezone value; syslog-ng converts message timestamps to this timezone before
sending the message to its destination (file or network socket). Each destination defaults to the value of
the send_time_zone() global option.

Note
A message can be sent to multiple destination zones. The syslog-ng application converts the timezone information
properly for every individual destination zone.

Warning
If syslog-ng OSE sends the message is to the destination using the legacy-syslog protocol (RFC3164) which does
not support timezone information in its timestamps, the timezone information cannot be encapsulated into the
sent timestamp, so syslog-ng OSE will convert the hour:min values based on the explicitly specified timezone.

Step 4. If the timezone is not specified, the message is left unchanged.

Step 5. When macro expansions are used in the destination filenames, the local timezone is used.

2.5.1. A note on timezones and timestamps

If the clients run syslog-ng, then use the ISO timestamp, because it includes timezone information. That way you
do not need to adjust the recv_time_zone() parameter of syslog-ng.

9www.balabit.com

A note on timezones and timestamps

If you want syslog-ng to output timestamps in Unix (POSIX) time format, use the S_UNIXTIME and R_UNIXTIME
macros. You do not need to change any of the timezone related parameters, because the timestamp information
of incoming messages is converted to Unix time internally, and Unix time is a timezone-independent time
representation. (Actually, Unix time measures the number of seconds elapsed since midnight of Coordinated
Universal Time (UTC) January 1, 1970, but does not count leap seconds.)

2.6. The license of syslog-ng OSE

Starting with version 3.2, the syslog-ng Open Source Edition application is licensed under a combined LGPL+GPL
license. The core of syslog-ng OSE is licensed under the GNU Lesser General Public License Version 2.1 license,
while the rest of the codebase is licensed under the GNU General Public License Version 2 license.

Note
Practically, the code stored under the lib directory of the source code package is under LGPL, the rest is GPL.

For details about the LGPL and GPL licenses, see Appendix 3, GNU Lesser General Public License (p. 303) and Appendix
2, GNU General Public License (p. 297), respectively.

2.7. High availability support

Multiple syslog-ng servers can be run in fail-over mode. The syslog-ng application does not include any internal
support for this, as clustering support must be implemented on the operating system level. A tool that can be used
to create UNIX clusters is Heartbeat (for details, see this page).

2.8. The structure of a log message

The following sections describe the structure of log messages. Currently there are two standard syslog message
formats:

■ The old standard described in RFC 3164 (also called the BSD-syslog or the legacy-syslog protocol): see
Section 2.8.1, BSD-syslog or legacy-syslog messages (p. 10)

■ The new standard described in RFC 5424 (also called the IETF-syslog protocol): see Section 2.8.2,
IETF-syslog messages (p. 12)

■ How messages are represented in syslog-ng OSE: see Section 2.8.3, Message representation in syslog-ng
OSE (p. 15).

2.8.1. BSD-syslog or legacy-syslog messages

This section describes the format of a syslog message, according to the legacy-syslog or BSD-syslog protocol). A syslog
message consists of the following parts:

■ PRI

■ HEADER

■ MSG

10www.balabit.com

The license of syslog-ng OSE

http://www.linux-ha.org/
http://tools.ietf.org/search/rfc3164

The total message cannot be longer than 1024 bytes.

The following is a sample syslog message: <133>Feb 25 14:09:07 webserver syslogd: restart. The
message corresponds to the following format: <priority>timestamp hostname application: message.
The different parts of the message are explained in the following sections.

Note
The syslog-ng application supports longer messages as well. For details, see the log_msg_size() option in Section 9.2, Global
options (p. 191). However, it is not recommended to enable messages larger than the packet size when using UDP destinations.

2.8.1.1. The PRI message part

The PRI part of the syslog message (known as Priority value) represents the Facility and Severity of the message.
Facility represents the part of the system sending the message, while severity marks its importance. The Priority
value is calculated by first multiplying the Facility number by 8 and then adding the numerical value of the Severity.
The possible facility and severity values are presented below.

Note
Facility codes may slightly vary between different platforms. The syslog-ng application accepts facility codes as numerical
values as well.

FacilityNumerical Code

kernel messages0

user-level messages1

mail system2

system daemons3

security/authorization messages4

messages generated internally by syslogd5

line printer subsystem6

network news subsystem7

UUCP subsystem8

clock daemon9

security/authorization messages10

FTP daemon11

NTP subsystem12

log audit13

log alert14

clock daemon15

11www.balabit.com

BSD-syslog or legacy-syslog messages

FacilityNumerical Code

locally used facilities (local0-local7)16-23

Table 2.1. syslog Message Facilities

The following table lists the severity values.

SeverityNumerical Code

Emergency: system is unusable0

Alert: action must be taken immediately1

Critical: critical conditions2

Error: error conditions3

Warning: warning conditions4

Notice: normal but significant condition5

Informational: informational messages6

Debug: debug-level messages7

Table 2.2. syslog Message Severities

2.8.1.2. The HEADER message part

The HEADER part contains a timestamp and the hostname (without the domain name) or the IP address of the
device. The timestamp field is the local time in the Mmm dd hh:mm:ss format, where:

■ Mmm is the English abbreviation of the month: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,
Dec.

■ dd is the day of the month on two digits. If the day of the month is less than 10, the first digit is replaced
with a space. (For example Aug 7.)

■ hh:mm:ss is the local time. The hour (hh) is represented in a 24-hour format. Valid entries are between
00 and 23, inclusive. The minute (mm) and second (ss) entries are between 00 and 59 inclusive.

Note
The syslog-ng application supports other timestamp formats as well, like ISO, or the PIX extended format. For details, see
the ts_format() option in Section 9.2, Global options (p. 191).

2.8.1.3. The MSG message part

The MSG part contains the name of the program or process that generated the message, and the text of the message
itself. The MSG part is usually in the following format: program[pid]: message text.

2.8.2. IETF-syslog messages

This section describes the format of a syslog message, according to the IETF-syslog protocol). A syslog message
consists of the following parts:

12www.balabit.com

IETF-syslog messages

http://tools.ietf.org/html/rfc5424

■ HEADER (includes the PRI as well)

■ STRUCTURED-DATA

■ MSG

The following is a sample syslog message:

<34>1 2003-10-11T22:14:15.003Z mymachine.example.com su - ID47 - BOM'su root' failed
for lonvick on /dev/pts/8

The message corresponds to the following format:

<priority>VERSION ISOTIMESTAMP HOSTNAME APPLICATION PID MESSAGEID STRUCTURED-DATA
MSG

In this example, the Facility has the value of 4, severity is 2, so PRI is 34. The VERSION is 1. The message was
created on 11 October 2003 at 10:14:15pm UTC, 3 milliseconds into the next second. The message originated from
a host that identifies itself as "mymachine.example.com". The APP-NAME is "su" and the PROCID is unknown.
The MSGID is "ID47". The MSG is "'su root' failed for lonvick...", encoded in UTF-8. The encoding is defined
by the BOM . There is no STRUCTURED-DATA present in the message, this is indicated by "-" in the
STRUCTURED-DATA field. The MSG is "'su root' failed for lonvick...".

The HEADER part of the message must be in plain ASCII format, the parameter values of the
STRUCTURED-DATA part must be in UTF-8, while the MSG part should be in UTF-8. The different parts of
the message are explained in the following sections.

2.8.2.1. The PRI message part

The PRI part of the syslog message (known as Priority value) represents the Facility and Severity of the message.
Facility represents the part of the system sending the message, while severity marks its importance. The Priority
value is calculated by first multiplying the Facility number by 8 and then adding the numerical value of the Severity.
The possible facility and severity values are presented below.

Note
Facility codes may slightly vary between different platforms. The syslog-ng application accepts facility codes as numerical
values as well.

FacilityNumerical Code

kernel messages0

user-level messages1

mail system2

system daemons3

security/authorization messages4

messages generated internally by syslogd5

Source: http://tools.ietf.org/html/rfc5424
The byte order mark (BOM) is a Unicode character used to signal the byte-order of the message text.

13www.balabit.com

IETF-syslog messages

FacilityNumerical Code

line printer subsystem6

network news subsystem7

UUCP subsystem8

clock daemon9

security/authorization messages10

FTP daemon11

NTP subsystem12

log audit13

log alert14

clock daemon15

locally used facilities (local0-local7)16-23

Table 2.3. syslog Message Facilities

The following table lists the severity values.

SeverityNumerical Code

Emergency: system is unusable0

Alert: action must be taken immediately1

Critical: critical conditions2

Error: error conditions3

Warning: warning conditions4

Notice: normal but significant condition5

Informational: informational messages6

Debug: debug-level messages7

Table 2.4. syslog Message Severities

2.8.2.2. The HEADER message part

The HEADER part contains the following elements:

■ VERSION: Version number of the syslog protocol standard. Currently this can only be 1.

■ ISOTIMESTAMP: The time when the message was generated in the ISO 8601 compatible standard
timestamp format (yyyy-mm-ddThh:mm:ss+-ZONE), for example:
2006-06-13T15:58:00.123+01:00.

■ HOSTNAME: The machine that originally sent the message.

■ APPLICATION: The device or application that generated the message

■ PID: The process name or process ID of the syslog application that sent the message. It is not necessarily
the process ID of the application that generated the message.

14www.balabit.com

IETF-syslog messages

■ MESSAGEID: The ID number of the message.

Note
The syslog-ng application supports other timestamp formats as well, like ISO, or the PIX extended format. The timestamp
used in the IETF-syslog protocol is derived from RFC3339, which is based on ISO8601. For details, see the ts_format()
option in Section 9.2, Global options (p. 191).

The syslog-ng OSE application will truncate the following fields:

■ If APP-NAME is longer than 48 characters it will be truncated to 48 characters.

■ If PROC-ID is longer than 128 characters it will be truncated to 128 characters.

■ If MSGID is longer than 32 characters it will be truncated to 32 characters.

■ If HOSTNAME is longer than 255 characters it will be truncated to 255 characters.

2.8.2.3. The STRUCTURED-DATA message part

The STRUCTURED-DATA message part may contain meta- information about the syslog message, or
application-specific information such as traffic counters or IP addresses. STRUCTURED-DATA consists of data
blocks enclosed in brackets ([]). Every block includes the ID of the block, and one or more name=value pairs.
The syslog-ng application automatically parses the STRUCTURED-DATA part of syslog messages, which can be
referenced in macros (for details, see Section 11.1.5, Macros of syslog-ng OSE (p. 214)). An example
STRUCTURED-DATA block looks like:

[exampleSDID@0 iut="3" eventSource="Application" eventID="1011"][examplePriority@0
class="high"]

2.8.2.4. The MSG message part

The MSG part contains the text of the message itself. The encoding of the text must be UTF-8 if the BOM character
is present in the message. If the message does not contain the BOM character, the encoding is treated as unknown.
Usually messages arriving from legacy sources do not include the BOM character. CRLF characters will not be
removed from the message.

2.8.3. Message representation in syslog-ng OSE

When the syslog-ng OSE application receives a message, it automatically parses the message. The syslog-ng OSE
application can automatically parse log messages that conform to the RFC3164 (BSD or legacy-syslog) or the
RFC5424 (IETF-syslog) message formats. If syslog-ng OSE cannot parse a message, it results in an error.

Tip
In case you need to relay messages that cannot be parsed without any modifications or changes, use the flags(no-parse)
option in the source definition, and a template containing only the ${MSG} macro in the destination definition.

The byte order mark (BOM) is a Unicode character used to signal the byte-order of the message text.

15www.balabit.com

Message representation in syslog-ng OSE

A parsed message has the following parts.

■ Timestamps. Two timestamps are associated with every message: one is the timestamp contained
within the message (that is, when the sender sent the message), the other is the time when syslog-ng
OSE has actually received the message.

■ Severity. The severity of the message.

■ Facility. The facility that sent the message.

■ Tags. Custom text labels added to the message that are mainly used for filtering. None of the current
message transport protocols adds tags to the log messages. Tags can be added to the log message only
within syslog-ng OSE. The syslog-ng OSE application automatically adds the id of the source as a tag
to the incoming messages. Other tags can be added to the message by the pattern database, or using the
tags() option of the source.

■ IP address of the sender. The IP address of the host that sent the message. Note that the IP address
of the sender is a hard macro and cannot be modified within syslog-ng OSE but the associated hostname
can be modified, for example, using rewrite rules.

■ Hard macros. Hard macros contain data that is directly derived from the log message, for example,
the ${MONTH} macro derives its value from the timestamp. The most important consideration with
hard macros is that they are read-only, meaning they cannot be modified using rewrite rules or other
means.

■ Soft macros. Soft macros (sometimes also called name-value pairs) are either built-in macros
automatically generated from the log message (for example, ${HOST}), or custom user-created macros
generated by using the syslog-ng pattern database or a CSV-parser. The SDATA fields of
RFC5424-formatted log messages become soft macros as well. In contrast with hard macros, soft macros
are writable and can be modified within syslog-ng OSE, for example, using rewrite rules.

Note
It is also possible to set the value of built-in soft macros using parsers, for example, to set the ${HOST} macro
from the message using a column of a CSV-parser.

The data extracted from the log messages using named pattern parsers in the pattern database are also soft
macros.

Tip
For the list of hard and soft macros, see Section 11.1.4, Hard vs. soft macros (p. 213).

2.8.4. Structuring macros, metadata, and other value-pairs

Available in syslog-ng OSE 3.3 and later.

The syslog-ng OSE application allows you to select and construct name-value pairs from any information already
available about the log message, or extracted from the message itself. This structured information can be used
directly in a MongoDB database (see the value-pairs() option of the mongodb() destination in Section 7.3,

16www.balabit.com

Structuring macros, metadata, and other value-pairs

Storing messages in a MongoDB database (p. 118)), or in other destinations using the format-json() template function
(see Section format-json (p. 220) for details).

When using value-pairs, there are three ways to specify which information (that is, macros or other name-value
pairs) to include in the selection.

■ Select groups of macros using the scope() parameter, and optionally remove certain macros from the
group using the exclude() parameter.

■ List specific macros to include using the key() parameter.

■ Define new name-value pairs to include using the pair() parameter.

These parameters are detailed in Section value-pairs() (p. 17).

value-pairs()
parameter list of the value-pairs() optionType:
empty stringDefault:

Description: The value-pairs() option allows you to select specific information about a message easily using
predefined macro groups. The selected information is represented as name-value pairs and can be used formatted
to JSON format, or directly used in a mongodb() destination.

Example 2.1. Using the value-pairs() option
The following example selects every available information about the log message, except for the date-related macros (R_*
and S_*), selects the .SDATA.meta.sequenceId macro, and defines a new value-pair called MSGHDR that contains the
program name and PID of the application that sent the log message.

value-pairs(
scope(nv_pairs core syslog all_macros selected_macros everything)
exclude("R_*")
exclude("S_*")
key(".SDATA.meta.sequenceId")
pair("MSGHDR" "$PROGRAM[$PID]: ")

)

The following example selects the same information as the previous example, but converts it into JSON format.

$(format-json --scope nv_pairs,core,syslog,all_macros,selected_macros,everything \
--exclude R_* --exclude S_* --key .SDATA.meta.sequenceId \
--pair MSGHDR="$PROGRAM[$PID]: ")

Note
Every macro is included in the selection only once, but redundant information may appear if multiple macros include the
same information (for example, including several date-related macros in the selection).

The value-pairs() option has the following parameters. The parameters are evaluated in the following order:

1. scope()

2. exclude()

3. key()

17www.balabit.com

Structuring macros, metadata, and other value-pairs

4. pair()

exclude()
Space-separated list of macros to remove from the
selection created using the scope() option.

Type:

empty stringDefault:
Description: This option removes the specified macros from
the selection. Use it to remove unneeded macros selected
using the scope() parameter.

For example, the following example removes the SDATA
macros from the selection.

value-pairs(
scope(rfc5424 selected_macros)
exclude(".SDATA*")

)

The name of the macro to remove can include glob
expressions and wildcards (*, ?, [ab], {foo,bar}),
as described in Section glob (p. 232). Regular expressions are not
supported.

key()
A glob expression specifying the macros to be
included in selection

Type:

empty stringDefault:
Description: This option selects the specified macros. The
The selected macros will be included as MACRONAME =
MACROVALUE, that is using key("HOST")will result in HOST
= $HOST. Multiple macros can be selected using glob
expressions. For details on globs, see Section glob (p. 232). For
example:

value-pairs(
scope(rfc3164)
key("HOST"))

18www.balabit.com

Structuring macros, metadata, and other value-pairs

 pair()
name value pairs in "<NAME>" "<VALUE>"Type:
empty stringDefault:

Description: This option defines a new name-value pair to
be included in the message. The value part can include macros,
templates, and template functions as well. For example:

value-pairs(
scope(rfc3164)
pair("TIME" "$HOUR:$MIN")
pair("MSGHDR" "$PROGRAM[$PID]: "))

19www.balabit.com

Structuring macros, metadata, and other value-pairs

 rekey()
<pattern-to-select-names>, <list of
transformations>

Type:

empty stringDefault:

20www.balabit.com

Structuring macros, metadata, and other value-pairs

21www.balabit.com

Structuring macros, metadata, and other value-pairs

Description: This option allows you to manipulate and
modify the name of the value-pairs. You can define
transformations, which are are applied to the selected
name-value pairs. The first parameter of the rekey() option
is a glob pattern that selects the name-value pairs to modify.
If you omit the pattern, the transformations are applied to
every key of the scope. For details on globs, see Section
glob (p. 232).

■ If rekey() is used within a key() option, the
name-value pairs specified in the glob of the
key() option are transformed.

■ If rekey() is used outside the key() option,
every name-value pair of the scope() is
transformed.

The following transformations are available:

add-prefix("<my-prefix>") Adds the
s p e c i f i e d
prefix to
every name.
F o r
e x a m p l e ,
r e k e y (
add-prefix("my-prefix."))

replace("<prefix-to-replace>",
"<new-prefix>")

Replaces a
substring at
t h e
beginning of
the key with
a n o t h e r
string. Only
prefixes can
be replaced.
F o r
e x a m p l e ,
replace(".class",
",patterndb")
changes the
beg inn ing
tag .class
t o
.patterndb

shift("<number>") Cuts the
s p e c i f i e d
number of
characters

22www.balabit.com

Structuring macros, metadata, and other value-pairs

from the
beginning of
the name.

Example 2.2. Using the rekey() option
The following sample selects every value-pair that
begins with .cee., deletes this prefix by cutting 4
characters from the names, and adds a new prefix
(events.).

value-pairs(
key(".cee.*"

rekey(
shift(4)
add-prefix("events.")

)
)

)

The rekey() option can be used with the
format-json template-function as well, using the
following syntax:

$(format-json --key .cee.* --rekey
--shift 4 --add-prefix events.)

23www.balabit.com

Structuring macros, metadata, and other value-pairs

 scope()
space-separated list of macro groups to include in
selection

Type:

empty stringDefault:

24www.balabit.com

Structuring macros, metadata, and other value-pairs

25www.balabit.com

Structuring macros, metadata, and other value-pairs

Description: This option selects predefined groups of macros.
The following groups are available:

■ soft-macros: Every soft macro associated with the
message, except the ones that start with a dot (.)
character. Macros starting with a dot character are
generated within syslog-ng OSE and are not
originally part of the message, therefore are not
included in this group. The soft-macros group
also has the following alias: nv-pairs.

■ dot-soft-macros: Every soft macro associated with the
message which starts with a dot (.) character. For
example, .classifier.rule_id and
.sdata.*. Macros starting with a dot character
are generated within syslog-ng OSE and are not
originally part of the message. The
dot-soft-macros group also has the following
alias: dot-nv-pairs.

■ all-soft-macros: Include every soft macro (equivalent
to using both soft-macros and
dot-soft-macros). The all-soft-macros
group also has the following alias: all-nv-pairs.

■ rfc3164: The macros that correspond to the
RFC3164 (legacy or BSD-syslog) message format:
$FACILITY, $PRIORITY, $HOST, $PROGRAM,
$PID, $MESSAGE, and $R_DATE. The rfc3164
group also has the following aliases: core, base.
Note that the value of $R_DATE will be listed
under the DATE key.

■ rfc5424: The macros that correspond to the
RFC5424 (IETF-syslog) message format:
$FACILITY, $PRIORITY, $HOST, $PROGRAM,
$PID, $MESSAGE, $MSGID, and $R_DATE. The
rfc5424 group also has the following alias:
syslog-proto. Note that the value of $R_DATE
will be listed under the DATE key.
The rfc5424 group does not contain any
metadata about the message, only information that
was present in the original message. To include the
most commonly used metadata (for example, the
$SOURCEIPmacro), use the selected-macros
group instead.

■ all-hard-macros: Include every hard macro. This
group is mainly useful for debugging, as it contains
redundant information (for example, the

26www.balabit.com

Structuring macros, metadata, and other value-pairs

date-related macros include the date-related
information several times in various formats).

■ selected-macros: Include the macros of the rfc5424
group and the most commonly used metadata
about the log message: the $TAGS, $SOURCEIP,
and $SEQNUM macros.

■ sdata: The metadata from the structured-data
(SDATA) part of RFC5424-formatted messages,
that is, every macro that starts with .SDATA.

■ everything: Include every hard and soft macros. This
group is mainly useful for debugging, as it contains
redundant information (for example, the
date-related macros include the date-related
information several times in various formats).

For example:

value-pairs(
scope(rfc3164 selected_macros))

27www.balabit.com

Structuring macros, metadata, and other value-pairs

Chapter 3. Installing syslog-ng

This chapter explains how to install syslog-ng Open Source Edition on various platforms.

■ You can install syslog-ng OSE on many platforms using the package manager and official repositories
of the platform. For a list of third-party packages available for various Linux, UNIX, and other platforms,
see third-party binaries page.

■ For instructions on compiling syslog-ng Open Source Edition from the source code, see Procedure 3.1,
Compiling syslog-ng from source (p. 28).

3.1. Procedure – Compiling syslog-ng from source

Purpose:

To compile syslog-ng Open Source Edition (OSE) from the source code, complete the following steps. Alternatively,
you can use precompiled binary packages on several platforms. For a list of third-party packages available for various
Linux, UNIX, and other platforms, see third-party binaries page.

Steps:

Step 1. Download the latest version of syslog-ng OSE from the BalaBit website or from GitHub. The source code
is available as a tar.gz archive file.

Step 2. Download the latest version of the EventLog library here.

Step 3. Install the following packages that are required to compile syslog-ng. These packages are available for most
UNIX/Linux systems. Alternatively, you can also download the sources and compile them.

■ A version of the gcc C compiler that properly supports Thread Local Storage (TLS), for example,
version 4.5 (at least version. For building recent gcc versions on Solaris, see
http://jblopen.com/node/16.

■ The GNU flex lexical analyser generator, available here.

■ The bison parser generator, available here.

■ The development files of the glib library, available here.

Step 4. If you want to use the spoof-source function of syslog-ng, install the development files of the libnet library,
available here.

Step 5. If you want to send e-mails using the smtp() destination, install the development files of the libesmtp
library, available here. This library is not needed if you use the --disable-smtp compile option.

Step 6. If you want to use the /etc/hosts.deny and /etc/hosts.allow for TCP access, install the development files of the
libwrap (also called TCP-wrappers) library, available here.

Step 7. Uncompress the eventlog archive using the

$ tar xvfz eventlog-x.x.x.x.tar.gz

or the

$ gunzip -c eventlog-x.x.x.x.tar.gz | tar xvf -

28www.balabit.com

http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/downloads/3rd_party
http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/downloads/3rd_party
https://www.balabit.com/downloads/files/syslog-ng/sources/
https://github.com/balabit
https://www.balabit.com/downloads/files/eventlog/0.2/
http://jblopen.com/node/16
http://flex.sourceforge.net/
http://ftp.gnu.org/gnu/bison/
http://freshmeat.net/projects/glib/
http://libnet.sourceforge.net
http://www.stafford.uklinux.net/libesmtp/
ftp://ftp.porcupine.org/pub/security/index.html

command. A new directory containing the source code of eventlog will be created.

Step 8. By default, eventlog creates a file used by the syslog-ng configure script in the /usr/local/lib/pkgconfig
directory. Issue the following command to add this directory to your PKG_CONFIG_PATH:

PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:$PKG_CONFIG_PATH

Step 9. Enter the new directory and issue the following commands:

$./configure
$ make
$ make install

Step 10. Uncompress the syslog-ng archive using the

tar xvfz syslog-ng-x.xx.tar.gz

or the

unzip -c syslog-ng-x.xx.tar.gz | tar xvf -

command. A new directory containing the source code of syslog-ng will be created.

Step 11. Enter the new directory and issue the following commands:

$./configure
$ make
$ make install

These commands will build syslog-ng using its default options.

Note

■ On Solaris, use gmake (GNU make) instead of make.

■ To build syslog-ng OSE with less verbose output, use the make V=0 command. This results in
shorter, less verbose output, making warnings and other anomalies easier to notice.Note that
silent-rules support is only available in recent automake versions.

Step 12. If needed, use the following options to change how syslog-ng is compiled using the following command
syntax:

$./configure --compile-time-option-name

Note
You can also use --disable options, to explicitly disable a feature and override autodetection. For example, to disable
the TCP-wrapper support, use the --disable-tcp-wrapper option.

29www.balabit.com

Warning
Starting with syslog-ng Open Source Edition 3.0.2, default linking mode of syslog-ng is dynamic. This means
that syslog-ng might not be able to start up if the /usr directory is on NFS. On platforms where syslog-ng is
used as a system logger, the --enable-mixed-linking is preferred.

■ --disable-json Disable JSON support. It also disables json-parser, and the format-json
template function. Also, it disables JSON support even if the json-c library is installed and
detected (see --enable-json).

■ --disable-smtp Disable SMTP support. By default, SMTP support is enabled if the libesmtp library
is detected.

■ --enable-debug Include debug information.

■ --enable-dynamic-linking Compile syslog-ng as a completely dynamic binary. If not specified syslog-ng
uses mixed linking (--enable-mixed-linking): it links dynamically to system libraries and
statically to everything else.

■ --enable-geoip Enable GEOIP support, required for the geoip template function (enabled
automatically if the libgeoip library is detected).

■ --enable-ipv6 Enable IPv6 support.

■ --enable-json Enables JSON support (enabled automatically if the json-c 0.9 or newer library
is installed and detected).

■ --enable-linux-caps Enable support for capabilities on Linux.

■ --enable-mongodb Enable the mongodb destination (enabled by default). The source of the
MongoDB client is included in the source code package of syslog-ng OSE. To use an external
MongoDB client instead, use the --with-libmongo-client=system compiling option.
For details on using this destination, see Section 7.3, Storing messages in a MongoDB database (p. 118).

■ --enable-pcre Enable using PCRE-type regular expressions. Requires the libpcre library package.

■ --enable-spoof-source Enable spoof_source feature (disabled by default).

■ --enable-ssl Enable SSL support, required for encrypted message transfer, as well as template
functions that calculate hashes and UUIDs (enabled automatically if the libopenssl library
is detected).

■ --enable-sun-door Enable Sun door support even if not detected (autodetected by default).

■ --enable-sun-streams Enable Sun STREAMS support even if not detected (autodetected by default).

■ --enable-systemd Enable systemd support on Linux platforms (autodetected by default).

■ --enable-tcp-wrapper Enable using /etc/hosts.deny and /etc/hosts.allow for TCP access (enabled
automatically if the libwrap libraries are detected).

■ --with-embedded-crypto If this option is set, the crypto library is linked directly into libsyslog-ng:
the sources of libsyslog-ng-crypto will be appended to the libsyslog-ng sources, and -crypto is
not built.

■ --with-ivykis Specifies which ivykis implementation to use (default value: internal). The source
of ivykis is included in the source code package of syslog-ng OSE and is used by default. To
use an external implementation instead, use the --with-ivykis=system compiling option.

30www.balabit.com

■ --with-libmongo-client Specifies which MongoDB client to use (default value: internal). The source
of the mongodb client is included in the source code package of syslog-ng OSE and is used by
default. To use an external MongoDB client instead, use the
--with-libmongo-client=system compiling option. For details on using this destination,
see Section 7.3, Storing messages in a MongoDB database (p. 118).

■ --with-librabbitmq-client Specifies which RabbitMQ client to use (default value: internal). The
source of the rabbitmq client is included in the source code package of syslog-ng OSE and is
used by default . To use an external c l ient instead, use the
--with-librabbitmq-client=system compiling option. For details on using this
destination, see Section 7.1, Publishing messages using AMQP (p. 108).

■ --with-module-dir Specifies a single directory where the syslog-ng OSE Makefile will install the
modules.

■ --with-module-path Specifies a colon-separated (:) list of directories, where the syslog-ng OSE
binary will search for modules.

■ --with-timezone-dir Specifies the directory where syslog-ng looks for the timezone files to resolve
the time_zone() and local_time_zone() options. If not specified, the
/opt/syslog-ng/share/zoneinfo/ and /usr/share/zoneinfo/ directories are
checked, respectively. Note that HP-UX uses a unique file format (tztab) to describe the
timezone information; that format is currently not supported in syslog-ng. As a workaround,
copy the zoneinfo files from another, non-HP-UX system to the
/opt/syslog-ng/share/zoneinfo/ directory of your HP-UX system.

■ --without-compile-date Removes the compilation date from the binary. For example, as openSUSE
checks if recompilation changes the binary to detect if dependent packages need to be rebuilt
or not, and including the date changes the binary every time.

3.2. Uninstalling syslog-ng OSE

If you need to uninstall syslog-ng OSE for some reason, you have the following options:

■ If you have installed syslog-ng OSE from a .deb package: Execute the dpkg -r syslog-ng command to
remove syslog-ng; or the dpkg -P syslog-ng command to remove syslog-ng OSE and the
configuration files as well. Note that removing syslog-ng OSE does not restore the syslog daemon used
before syslog-ng.

■ If you have installed syslog-ng OSE from an .rpm package: Execute the rpm -e syslog-ng command to
remove syslog-ng OSE. Note that removing syslog-ng OSE does not restore the syslog daemon used
before syslog-ng OSE.

3.3. Procedure – Configuring Microsoft SQL Server to accept logs from syslog-ng

Purpose:

Complete the following steps to configure your Microsoft SQL Server to enable remote logins and accept log
messages from syslog-ng.

Steps:

31www.balabit.com

Uninstalling syslog-ng OSE

Step 1. Start the SQL Server Management Studio application. Select Start > Programs > Microsoft SQL Server
2005 > SQL Server Management Studio.

Step 2. Create a new database.

Step a.

Figure 3.1. Creating a new MSSQL database 1.

In the Object Explorer, right-click on the Databases entry and select New Database.

32www.balabit.com

Uninstalling syslog-ng OSE

Step b.

Figure 3.2. Creating a new MSSQL database 2.

Enter the name of the new database (for example syslogng) into the Database name
field and click OK.

Step 3. Create a new database user and associate it with the new database.

33www.balabit.com

Uninstalling syslog-ng OSE

Figure 3.3. Creating a new MSSQL user 1.

In the Object Explorer, select Security, right-click on the Logins entry, then select New
Login.

Step a.

Step b.

Figure 3.4. Creating a new MSSQL user 2.

Enter a name (for example syslog-ng) for the user into the Login name field.

34www.balabit.com

Uninstalling syslog-ng OSE

Step c. Select the SQL Server Authentication option and enter a password for the user.

Step d. In the Default database field, select the database created in Step 2 (for example
syslogng).

Step e. In the Default language field, select the language of log messages that you want to store
in the database, then click OK.

Warning
Incorrect language settings may result in the database converting the messages to a different
character-encoding format. That way the log messages may become unreadable, causing
information loss.

Step f. In the Object Explorer, select Security > Logins, then right-click on the new login created
in the previous step, and select Properties.

35www.balabit.com

Uninstalling syslog-ng OSE

Step g.

Figure 3.5. Associating database with the new user

Select User Mapping. In the Users mapped to this login option, check the line
corresponding to the new login (for example syslogng). In the Database role
membership field, check the db_owner and public options.

36www.balabit.com

Uninstalling syslog-ng OSE

Step 4.

Figure 3.6. Associating database with the new user

Enable remote logins for SQL users.

In the Object Explorer right-click on your database server, and select Properties > Security, and set the
Server Authentication option to SQL Server and Windows Authentication mode.

37www.balabit.com

Uninstalling syslog-ng OSE

Chapter 4. The syslog-ng OSE quick-start guide

This chapter provides a very brief introduction into configuring the syslog-ng OSE application. For details on the
format of the configuration file and how to configure sources, destinations, and other features, refer to the subsequent
chapters.

■ To configure syslog-ng OSE as a client that sends log messages to a central logserver, see Procedure 4.1,
Configuring syslog-ng on client hosts (p. 38).

■ To configure syslog-ng OSE as a server that receives log messages from client hosts, see Procedure 4.2,
Configuring syslog-ng on server hosts (p. 40).

■ To configure syslog-ng OSE as a relay that receives log messages from client hosts and forwards them
to a central logserver, see Procedure 4.2, Configuring syslog-ng on server hosts (p. 40).

4.1. Procedure – Configuring syslog-ng on client hosts

Purpose:

To configure syslog-ng on a client host, complete the following steps.

Steps:

Step 1. Install the syslog-ng application on the host. For details installing syslog-ng on specific operating systems,
see Chapter 3, Installing syslog-ng (p. 28).

Step 2. Configure the local sources to collect the log messages of the host. Starting with version 3.2, syslog-ng
OSE automatically collects the log messages that use the native system logging method of the platform,
for example, messages from /dev/log on Linux, or /dev/klog on FreeBSD. For a complete list of
messages that are collected automatically, see Section 6.10, Collecting the system-specific log messages of a
platform (p. 90).

Add sources to collect the messages from your log files. File sources look like this:

source s_myfilesource {
file("/var/log/myapplication.log" follow_freq(1)); };

Name every source uniquely. For details on configuring file sources, see Section 6.3, Collecting messages from
text files (p. 57).

Tip
Many applications send log messages to logfiles by default (for example, the Roundcube webmail client, or the
ProFTPD FTP server), but can be configured to send them to syslog instead. If possible, it is recommended to
reconfigure the application that way.

Note
The default configuration file of syslog-ng OSE collects platform-specific log messages and the intenal log messages
of syslog-ng OSE.

38www.balabit.com

source s_local {
system();
internal();

};

Step 3. Create a network destination that points directly to the syslog-ng server, or to a local relay. The network
destination greatly depends on the protocol that your logserver or relay accepts messages. Many systems
still use the legacy BSD-syslog protocol (RFC3162) over the unreliable UDP transport:

destination d_network { udp("10.1.2.3"); };

However, if possible, use the much more reliable IETF-syslog protocol over TCP transport:

destination d_network {syslog(ip("10.1.2.3") transport("tcp"); };

Step 4. Create a log statement connecting the local sources to the syslog-ng server or relay. For example:

log {
source(s_local); destination(d_network); };

Step 5. If the logs will also be stored locally on the host, create local file destinations.

Note
The default configuration of syslog-ng OSE places the collected messages into the /var/log/messages file:

destination d_local {
file("/var/log/messages"); };

Step 6. Create a log statement connecting the local sources to the file destination.

Note
The default configuration of syslog-ng OSE has only one log statement:

log {
source(s_local); destination(d_local);

Step 7. Set filters, macros and other features and options (for example TLS encryption) as necessary.

Example 4.1. The default configuration file of syslog-ng OSE
The following is the default configuration file of syslog-ng OSE 3.2. It collects local log messages and the log messages of
syslog-ng OSE and forwards them to a logserver using the IETF-syslog protocol.

@version: 3.4
@include "scl.conf"
source s_local { system(); internal(); };
destination d_local {

file("/var/log/messages"); };
log { source(s_local); destination(d_local); };

39www.balabit.com

Example 4.2. A simple configuration for clients
The following is a simple configuration file that collects local log messages to the /var/log/messages file.

@version: 3.4
@include "scl.conf"
source s_local { system(); internal(); };
destination d_syslog_tcp {

syslog("192.168.1.1" transport("tcp") port(2010)); };
log { source(s_local);destination(d_syslog_tcp); };

4.2. Procedure – Configuring syslog-ng on server hosts

Purpose:

To configure syslog-ng on a server host, complete the following steps.

Steps:

Step 1. Install the syslog-ng application on the host. For details installing syslog-ng on specific operating systems,
see Chapter 3, Installing syslog-ng (p. 28).

Step 2. Starting with version 3.2, syslog-ng OSE automatically collects the log messages that use the native system
logging method of the platform, for example, messages from /dev/log on Linux, or /dev/klog on
FreeBSD. For a complete list of messages that are collected automatically, see Section 6.10, Collecting the
system-specific log messages of a platform (p. 90).

Step 3. Configure the network sources that collect the log messages sent by the clients and relays. How the network
sources should be configured depends also on the capabilities of your client hosts: many older networking
devices support only the legacy BSD-syslog protocol (RFC3164) using UDP transport:

source s_network { syslog(ip(10.1.2.3) transport("udp")); };

However, if possible, use the much more reliable TCP transport:

source s_network { syslog(ip(10.1.2.3) transport("tcp")); };

For other options, see Section 6.9, Collecting messages using the IETF syslog protocol (p. 82) and Section 6.11,
Collecting messages from remote hosts using the BSD syslog protocol (p. 92).

Note
Starting with syslog-ng OSE version 3.2, the syslog() source driver can handle both BSD-syslog (RFC 3164)
and IETF-syslog (RFC 5424-28) messages.

Step 4. Create local destinations that will store the log messages, for example file- or program destinations. The
default configuration of syslog-ng OSE places the collected messages into the /var/log/messages file:

destination d_local {
file("/var/log/messages"); };

If you want to create separate logfiles for every client host, use the ${HOST} macro when specifying the
filename, for example:

40www.balabit.com

destination d_local {
file("/var/log/messages_${HOST}"); };

For details on further macros and how to use them, see Chapter 11, Manipulating messages (p. 211).

Step 5. Create a log statement connecting the sources to the local destinations.

log {
source(s_local); source(s_network); destination(d_local);

Step 6. Set filters, options (for example TLS encryption) and other advanced features as necessary.

Note
By default, the syslog-ng server will treat the relayed messages as if they were created by the relay host, not the
host that originally sent them to the relay. In order to use the original hostname on the syslog-ng server, use the
keep_hostname(yes) option both on the syslog-ng relay and the syslog-ng server. This option can be set
individually for every source if needed.

If you are relaying log messages and want to resolve IP addresses to hostnames, configure the first relay to do the
name resolution.

Example 4.3. A simple configuration for servers
The following is a simple configuration file for syslog-ng Open Source Edition that collects incoming log messages and stores
them in a text file.

@version: 3.4
@include "scl.conf"

options {
time_reap(30);
mark_freq(10);
keep_hostname(yes);
};

source s_local { system(); internal(); };
source s_network {

syslog(transport(tcp));
};

destination d_logs {
file(

"/var/log/syslog-ng/logs.txt"
owner("root")
group("root")
perm(0777)
); };

log { source(s_local); source(s_network); destination(d_logs); };

4.3. Configuring syslog-ng relays

This section describes how to configure syslog-ng OSE as a relay.

4.3.1. Procedure – Configuring syslog-ng on relay hosts

Purpose:

To configure syslog-ng on a relay host, complete the following steps:

41www.balabit.com

Configuring syslog-ng relays

Steps:

Step 1. Install the syslog-ng application on the host. For details installing syslog-ng on specific operating systems,
see Chapter 3, Installing syslog-ng (p. 28).

Step 2. Configure the network sources that collect the log messages sent by the clients.

Step 3. Create a network destination that points to the syslog-ng server.

Step 4. Create a log statement connecting the network sources to the syslog-ng server.

Step 5. Configure the local sources that collect the log messages of the relay host.

Step 6. Create a log statement connecting the local sources to the syslog-ng server.

Step 7. Enable the keep_hostname() and disable the chain_hostnames() options.

Note
It is recommended to use these options on your syslog-ng OSE server as well.

Step 8. Set filters and options (for example TLS encryption) as necessary.

Note
By default, the syslog-ng server will treat the relayed messages as if they were created by the relay host, not the
host that originally sent them to the relay. In order to use the original hostname on the syslog-ng server, use the
keep_hostname(yes) option both on the syslog-ng relay and the syslog-ng server. This option can be set
individually for every source if needed.

If you are relaying log messages and want to resolve IP addresses to hostnames, configure the first relay to do the
name resolution.

Example 4.4. A simple configuration for relays
The following is a simple configuration file that collects local and incoming log messages and forwards them to a logserver
using the IETF-syslog protocol.

@version: @techversion;
@include "scl.conf"

options {
time_reap(30);
mark_freq(10);
keep_hostname(yes);
chain_hostnames(no);
};

source s_local { system(); internal(); };
source s_network {

syslog(transport(tcp));
};

destination d_syslog_tcp {
syslog("192.168.1.5" transport("tcp") port(2010));

};

log { source(s_local); source(s_network);
destination(d_syslog_tcp);

};

42www.balabit.com

Configuring syslog-ng relays

4.3.2. How relaying log messages works

Depending on your exact needs about relaying log messages, there are many scenarios and syslog-ng OSE options
that influence how the log message will look like on the logserver. Some of the most common cases are summarized
in the following example.

Consider the following example: client-host > syslog-ng-relay > syslog-ng-server, where the IP address of client-host
is 192.168.1.2. The client-host device sends a syslog message to syslog-ng-relay. Depending on the
settings of syslog-ng-relay, the following can happen.

■ By default, the keep_hostname() option is disabled, so syslog-ng-relay writes the IP address
of the sender host (in this case, 192.168.1.2) to the HOST field of the syslog message, discarding
any IP address or hostname that was originally in the message.

■ If the keep_hostname() option is enabled on syslog-ng-relay, but name resolution is disabled
(the use_dns() option is set to no), syslog-ng-relay uses the HOST field of the message as-is,
which is probably 192.168.1.2.

■ To resolve the 192.168.1.2 IP address to a hostname on syslog-ng-relay using a DNS server,
use the keep_hostname(no) and use_dns(yes) options. If the DNS server is properly configured
and reverse DNS lookup is available for the 192.168.1.2 address, syslog-ng OSE will rewrite the
HOST field of the log message to client-host.

Note
It is also possible to resolve IP addresses locally, without relying on the DNS server. For details on local name
resolution, see Procedure 17.4.1, Resolving hostnames locally (p. 272).

■ The above points apply to the syslog-ng OSE server (syslog-ng-server) as well, so if
syslog-ng-relay is configured properly, use the keep_hostname(yes) option on
syslog-ng-server to retain the proper HOST field. Setting on keep_hostname(no) on
syslog-ng-server would result in syslog-ng OSE rewriting the HOST field to the address of the
host that sent the message to syslog-ng-server, which is syslog-ng-relay in this case.

■ If you cannot or do not want to resolve the 192.168.1.2 IP address on syslog-ng-relay, but
want to store your log messages on syslog-ng-server using the IP address of the original host (that
is, client-host), you can enable the spoof_source() option on syslog-ng-relay. However,
spoof_source() works only under the following conditions:

• The syslog-ng OSE binary has been compiled with the --enable-spoof-source option.

• The log messages are sent using the highly unreliable UDP transport protocol. (Extremely
unrecommended.)

Many thanks to Lance Laursen for his excellent post about this topic on the syslog-ng mailing list.

43www.balabit.com

How relaying log messages works

https://lists.balabit.hu/pipermail/syslog-ng/2009-November/013571.html

Chapter 5. The syslog-ng OSE configuration file

5.1. Location of the syslog-ng configuration file

The syslog-ng application is configured by editing the syslog-ng.conf file. Use any regular text editor application
to modify the file. The location of the configuration file depends on how you installed syslog-ng OSE. Native
packages of a platform (like the ones downloaded from Linux repositories) typically place the configuration file
under the /etc/syslog-ng/ directory.

5.2. The configuration syntax in detail

Every syslog-ng configuration file must begin with a line containing the version information of syslog-ng. For
syslog-ng version 3.4, this line looks like:

@version: 3.4

Versioning the configuration file was introduced in syslog-ng 3.0. If the configuration file does not contain the
version information, syslog-ng assumes that the file is for syslog-ng version 2.x. In this case it interprets the
configuration and sends warnings about the parts of the configuration that should be updated. Version 3.0 and
later will correctly operate with configuration files of version 2.x, but the default values of certain parameters have
changed since 3.0.

Example 5.1. A simple configuration file
The following is a very simple configuration file for syslog-ng: it collects the internal messages of syslog-ng and the messages
from /dev/log into the /var/log/messages_syslog-ng.log file.

@version: 3.4

source s_local { unix-stream("/dev/log"); internal(); };

destination d_file {file("/var/log/messages_syslog-ng.log"); };

log { source(s_local); destination(d_file); };

As a syslog-ng user described on a mailing list:

Syslog-ng's config file format was written by programmers for
programmers to be understood by programmers. That may not have been
the stated intent, but it is how things turned out. The syntax is
exactly that of C, all the way down to braces and statement terminators.

—Alan McKinnon

■ The main body of the configuration file consists of object definitions: sources, destinations, logpaths
define which log message are received and where they are sent. All identifiers, option names and attributes,
and any other strings used in the syslog-ng configuration file are case sensitive. Objects must be defined
before they are referenced in another statement. Object definitions (also called statements) have the
following syntax:

44www.balabit.com

Location of the syslog-ng configuration file

http://www.gossamer-threads.com/lists/gentoo/user/209108

object_type object_id {<options>};

• Type of the object: One of source, destination, log, filter, parser, rewrite rule, or template.

• Identifier of the object: A unique name identifying the object. When using a reserved word as an identifier,
enclose the identifier in quotation marks.

Tip
Use identifiers that refer to the type of the object they identify. For example, prefix source objects with
s_, destinations with d_, and so on.

Note
Repeating a definition of an object (that is, defining the same object with the same id more than once) is
not allowed, unless you use the @define allow-config-dups 1 definition in the configuration file.

• Parameters: The parameters of the object, enclosed in braces {parameters}.

• Semicolon: Object definitions end with a semicolon (;).
For example, the following line defines a source and calls it s_internal.

source s_internal { internal(); };

The object can be later referenced in other statements using its ID, for example, the previous source is
used as a parameter of the following log statement:

log { source(s_internal); destination(d_file); };

■ The parameters and options within a statement are similar to function calls of the C programming
language: the name of the option followed by a list of its parameters enclosed within brackets and
terminated with a semicolon.

option(parameter1, parameter2); option2(parameter1, parameter2);

For example, the following source statement has three options; the first two options (file() and
follow_freq()) have a single parameter, while the third one (flags()) has two parameters:

source s_tail { file("/var/log/apache/access.log"
follow_freq(1) flags(no-parse, validate-utf8)); };

Objects may have required and optional parameters. Required parameters are positional, meaning that
they must be specified in a defined order. Optional parameters can be specified in any order using the
option(value) format. If a parameter (optional or required) is not specified, its default value is used.
The parameters and their default values are listed in the reference section of the particular object.

45www.balabit.com

The configuration syntax in detail

Example 5.2. Using required and optional parameters
The unix-stream() source driver has a single required argument: the name of the socket to listen on.
Optional parameters follow the socket name in any order, so the following source definitions have the same
effect:

source s_demo_stream1 {
unix-stream("/dev/log" max-connections(10) group(log)); };

source s_demo_stream2 {
unix-stream("/dev/log" group(log) max-connections(10)); };

■ Some options are global options, or can be set globally, for example, whether syslog-ng OSE should
use DNS resolution to resolve IP addresses. Global options are detailed in Chapter 9, Global options of
syslog-ng OSE (p. 191).

options { use_dns(no); };

■ All identifiers, attributes, and any other strings used in the syslog-ng configuration file are case sensitive.

■ Objects can be used before definition.

■ Objects can be defined inline as well. This is useful if you use the object only once (for example, a filter).
For details, see Section 5.4, Defining configuration objects inline (p. 47).

■ To add comments to the configuration file, start a line with # and write your comments. These lines are
ignored by syslog-ng.

Comment: This is a stream source
source s_demo_stream {

unix-stream("/dev/log" max-connections(10) group(log)); };

Tip
Before activating a new configuration, check that your configuration file is syntactically correct using the syslog-ng
--syntax-only command.

To activate the configuration, reload the configuration of syslog-ng using the /etc/init.d/syslog-ng reload command.

5.3. Notes about the configuration syntax

When you are editing the syslog-ng configuration file, note the following points:

■ When writing the names of options and parameters (or other reserved words), the hyphen (-) and
underscore (_) characters are equivalent, for example max-connections(10) and
max_connections(10) are both correct.

■ Number can be prefixed with + or - to indicate positive or negative values. Numbers beginning with
zero (0) or 0x are treated as octal or hexadecimal numbers, respectively.

■ You can use commas (,) to separate options or other parameters for readability; syslog-ng completely
ignores them. The following declarations are equivalent:

source s_demo_stream {
unix-stream("/dev/log" max-connections(10) group(log)); };

46www.balabit.com

Notes about the configuration syntax

source s_demo_stream {
unix-stream("/dev/log", max-connections(10), group(log)); };

■ When enclosing object IDs (for example the name of a destination) between double-quotes
("mydestination"), the ID can include whitespace as well, for example:

source "s demo stream" {
unix-stream("/dev/log" max-connections(10) group(log)); };

■ For notes on using regular expressions, see Section 11.3, Regular expressions (p. 230).

5.4. Defining configuration objects inline

Starting with syslog-ng OSE 3.4, you can define configuration objects inline, where they are actually used, without
having to define them in a separate placement. This is useful if you need an object only once, for example, a filter
or a rewrite rule. Every object can be defined inline: sources, destinations, filters, parsers, rewrite rules, and so on.

To define an object inline, use braces instead of parentheses. That is, instead of <object-type>
(<object-id>);, you use <object-type> {<object-definition>};

Example 5.3. Using inline definitions
The following two configuration examples are equivalent. The first one uses traditional statements, while the second uses
inline definitions.

source s_local {
system();
internal();

};
destination d_local {

file("/var/log/messages");
};
log {

source(s_local);
destination(d_local);

};

log {
source {

system();
internal();

};
destination {

file("/var/log/messages");s
};

};

5.5. Using channels in configuration objects

Starting with syslog-ng OSE 3.4, every configuration object is a log expression. Every configuration object is
essentially a configuration block, and can include multiple objects. To reference the block, only the top-level object
must be referenced. That way you can use embedded log statements, junctions and in-line object definitions within
source, destination, filter, rewrite and parser definitions. For example, a source can include a rewrite rule to modify
the messages received by the source, and that combination can be used as a simple source in a log statement. This
feature allows you to preprocess the log messages very close to the source itself.

47www.balabit.com

Defining configuration objects inline

To embed multiple objects into a configuration object, use the following syntax. Note that you must enclose the
configuration block between braces instead of parenthesis.

<type-of-top-level-object> <name-of-top-level-object> {
channel {

<configuration-objects>
}

}

Example 5.4. Using channels
For example, to process a log file in a specific way, you can define the required processing rules (parsers and rewrite expressions)
and combine them in a single object:

source s_apache {
channel {

source { file("/var/log/apache/error.log"); };
parser(p_apache_parser); };

};
};

log { source(s_apache); ... };

The s_apache source uses a file source (the error log of an Apache webserver) and references a specific parser to process
the messages of the error log. The log statement references only the s_apache source, and any other object in the log
statement can already use the results of the p_apache_parserparser.

Note
You must start the object definition with a channel even if you will use a junction, for example:

parser demo-parser() {
channel {

junction {
channel { ... }
channel { ... }

}
}

}

If you want to embed configuration objects into sources or destinations, always use channels, otherwise the source or destination
will not behave as expected. For example, the following configuration is good:

source s_filtered_hosts {
pipe("/dev/pipe");
syslog(ip(192.168.0.1) transport("tcp"));
syslog(ip(127.0.0.1) transport("tcp"));
filter (netmask(10.0.0.0/16));

}

5.6. Global and environmental variables

Starting with syslog-ng OSE version 3.2, it is possible to define global variables in the configuration file. Global
variables are actually name-value pairs; when syslog-ng processes the configuration file during startup, it
automatically replaces `name` with value. To define a global variable, use the following syntax:

@define name "value"

The value can be any string, but special characters must be escaped.To use the variable, insert the name of the
variable enclosed between backticks (`, similarly to using variables in Linux or UNIX shells) anywhere in the
configuration file.

48www.balabit.com

Global and environmental variables

The value of the global variable can be also specified using the following methods:

■ Without any quotes, as long as the value does not contain any spaces or special characters. In other
word, it contains only the following characters: a-zA-Z0-9_..

■ Between apostrophes, in case the value does not contain apostrophes.

■ Between double quotes, in which case special characters must be escaped using backslashes (\).

Tip
The environmental variables of the host are automatically imported and can be used as global variables.

Example 5.5. Using global variables
For example, if an application is creating multiple log files in a directory, you can store the path in a global variable, and use
it in your source definitions.

@define mypath "/opt/myapp/logs"
source s_myapp_1 { file("`mypath`/access.log" follow_freq(1)); };
source s_myapp_2 { file("`mypath`/error.log" follow_freq(1)); };
source s_myapp_3 { file("`mypath`/debug.log" follow_freq(1)); };

The syslog-ng OSE application will interpret this as:

@define mypath "/opt/myapp/logs"
source s_myapp_1 { file("/opt/myapp/logs/access.log" follow_freq(1)); };
source s_myapp_2 { file("/opt/myapp/logs/error.log" follow_freq(1)); };
source s_myapp_3 { file("/opt/myapp/logs/debug.log" follow_freq(1)); };

5.7. Loading modules

Starting with syslog-ng Open Source Edition version 3.3, syslog-ng OSE became modular to increase its flexibility
and also to simplify the development of additional modules. Most of the functionality of syslog-ng OSE has been
moved to separate modules. That way it becomes also possible to finetune the resource requirements of syslog-ng
OSE for example, by loading only the modules that are actually used in the configuration, or simply omitting
modules that are not used but require large amount of memory.

Each module contains one or more plugins, which add some functionality to syslog-ng OSE, for example, a
destination or a source driver.

■ To display the list of available modules, execute the syslog-ng --version command.

■ To the description of the available modules, execute the syslog-ng --module-registry command.

■ To customize which modules are loaded automatically when syslog-ng OSE is started, use the
--default-modules command-line option of syslog-ng OSE.

■ To request loading a module from the syslog-ng OSE configuration file, see Section 5.7.1, Loading
modules (p. 50).

For details on the command-line parameters of syslog-ng OSE mentioned in the previous list, see the syslog-ng
OSE man page at syslog-ng(8) (p. 285).

49www.balabit.com

Loading modules

5.7.1. Loading modules

The syslog-ng Open Source Edition application loads every available module during startup.

To load a module that is not loaded automatically, include the following statement in the syslog-ng OSE configuration
file:

@module <module-name>

Note the following points about the @module statement:

■ The @module statement is a top-level statement, that is, it cannot be nested into any other statement.
Usually it is used immediately after the @version statement.

■ Every @module statement loads a single module: loading multiple modules requires a separate @module
statement for every module.

■ In the configuration file, the @module statement of a module must be earlier than the module is used.

Note
To disable loading every module automatically, set the autoload-compiled-modules global variable to 0 in your
configuration file:

@define autoload-compiled-modules 0

Note that in this case, you have to explicitly load the modules you want to use.

5.8. Managing complex syslog-ng configurations

The following sections describe some methods that can be useful to simplify the management of large-scale syslog-ng
installations.

5.8.1. Including configuration files

The syslog-ng application supports including external files in its configuration file, so parts of its configuration can
be managed separately. To include the contents of a file in the syslog-ng configuration, use the following syntax:

include "<filename>";

This imports the entire file into the configuration of syslog-ng OSE, at the location of the include statement. The
<filename> can be one of the following:

■ A file name, optionally with full path. The filename (not the path) can include UNIX-style wildcard
characters (*, ?). When using wildcard characters, syslog-ng OSE will include every matching file. For
details on using wildcard characters, see Section glob (p. 232).

■ A directory. When including a directory, syslog-ng OSE will try to include every file from the directory
in alphabetic order, except files beginning with a ~ (tilde) or a . (dot) character. Including a directory is
not recursive.

When including configuration files, consider the following points:

50www.balabit.com

Loading modules

■ Defining an object twice is not allowed, unless you use the @define allow-config-dups 1
definition in the configuration file. If an object is defined twice (for example the original syslog-ng
configuration file and the file imported into this configuration file both define the same option, source,
or other object), then the object that is defined later in the configuration file will be effective. For example,
if you set a global option at the beginning of the configuration file, and later include a file that defines
the same option with a different value, then the option defined in the imported file will be used.

■ Files can be embedded into each other: the included files can contain include statements as well, up to
a maximum depth of 15 levels.

■ You cannot include complete configuration files into each other, only configuration snippets can be
included. This means that the included file cannot have a @version statement.

■ Include statements can only be used at top level of the configuration file. For example, the following is
correct:

@version: 3.4
include "example.conf";

But the following is not:

source s_example {
include "example.conf"
};

Warning
The syslog-ng application will not start if it cannot find a file that is to be included in its configuration. Always double-check
the filenames, paths, and access rights when including configuration files, and use the --syntax-only command-line option
to check your configuration.

5.8.2. Reusing configuration blocks

Starting with syslog-ng OSE 3.2, parts of a configuration file can be easily reused, you have to define the block (for
example, a source) once, and reference it later. Any syslog-ng object can be a block. Use the following syntax to
define a block:

block type name() {<contents of the block>}

Type must be one of the following: destination, filter, log, parser, rewrite, root, source.
The root blocks can be used in the "root" context of the configuration file, that is, outside any other statements.

Blocks may be nested into each other, so for example an SCL may be built from other blocks. Blocks are somewhat
similar to C++ templates.

The type and name combination of each block must be unique, that is, two blocks can have the same name if their
type is different.

To use a block in your configuration file, you have to do two things:

■ Include the file defining the block in the syslog-ng.conf file — or a file already included into
syslog-ng.conf.

51www.balabit.com

Reusing configuration blocks

■ Reference the name of the block in your configuration file. This will insert the block into your
configuration. For example, to use a block called myblock, include the following line in your
configuration:

myblock()

Blocks may have parameters, but even if they do not, the reference must include opening and closing
parentheses like in the previous example.

The contents of the block will be inserted into the configuration when syslog-ng OSE is started or reloaded.

Example 5.6. Reusing configuration blocks
Suppose you are running an application on your hosts that logs into the /opt/var/myapplication.log file. Create a
file (for example, myblocks.conf) that stores a source describing this file and how it should be read:

block source myappsource() {
file("/opt/var/myapplication.log" follow_freq(1) default-facility(syslog));

};

Include this file in your main syslog-ng configuration file,reference the block, and use it in a logpath:

@version: 3.4
include "<correct/path>/myblocks.conf";
source s_myappsource { myappsource(); }
...
log { source(s_myappsource); destination(…); };

To define a block that defines more than one object, use root as the type of the block, and reference the block
from the main part of the syslog-ng OSE configuration file.

Example 5.7. Defining blocks with multiple elements
The following example defines a source, a destination, and a log path to connect them.

block root mylogs() {
source s_file { file("/var/log/mylogs.log" follow_freq(1)); };
destination d_local { file("/var/log/messages"); };
log { source(s_file); destination(d_local); };
};

Tip
Since the block is inserted into the syslog-ng OSE configuration when syslog-ng OSE is started, the block can be generated
dynamically using an external script if needed. This is useful when you are running syslog-ng OSE on different hosts and you
want to keep the main configuration identical.

If you want to reuse more than a single configuration object, for example, a logpath and the definitions of its sources and
destinations, use the include feature to reuse the entire snippet. For details, see Section 5.8.1, Including configuration files (p. 50).

5.8.2.1. Passing arguments to configuration blocks

Configuration blocks can receive arguments as well. The parameters the block can receive must be specified when
the block is defined, using the following syntax:

block type block_name(argument1(<default-value-of-the-argument>)
argument2(<default-value-of-the-argument>) argument3())

52www.balabit.com

Reusing configuration blocks

If an argument does not have a default value, use empty parentheses after the name of the argument. To refer the
value of the argument in the block, use the name of the argument between backticks (for example, `argument1`).

Example 5.8. Passing arguments to blocks
The following sample defines a file source block, which can receive the name of the file as a parameter. If no parameter is
set, it reads messages from the /var/log/messages file.

block source s_logfile (filename("messages")) {
file("/var/log/`filename`");

};

source s_example {
s_logfile(filename("logfile.log"));

};

Example 5.9. Using arguments in blocks
The following example is the code of the pacct() source driver, which is actually a block that can optionally receive two
arguments.

block source pacct(file("/var/log/account/pacct") follow-freq(1)) {
@module pacctformat

file("`file`" follow-freq(`follow-freq`) format("pacct") tags(".pacct"));
};

53www.balabit.com

Reusing configuration blocks

Chapter 6. Collecting log messages — sources and
source drivers

6.1. How sources work

A source is where syslog-ng receives log messages. Sources consist of one or more drivers, each defining where
and how messages are received.

To define a source, add a source statement to the syslog-ng configuration file using the following syntax:

source <identifier> { source-driver(params); source-driver(params); ... };

Example 6.1. A simple source statement
The following source statement receives messages on the TCP port 1999 of the interface having the 10.1.2.3 IP address.

source s_demo_tcp { tcp(ip(10.1.2.3) port(1999)); };

Example 6.2. A source statement using two source drivers
The following source statement receives messages on the 1999 TCP port and the 1999 UDP port of the interface having
the 10.1.2.3 IP address.

source s_demo_two_drivers {
tcp(ip(10.1.2.3) port(1999));
udp(ip(10.1.2.3) port(1999)); };

Example 6.3. Setting default priority and facility
If the message received by the source does not have a proper syslog header, you can use the default-facility() and
default-priority() options to set the facility and priority of the messages. Note that these values are applied only to
messages that do not set these parameters in their header.

source headerless_messages { udp(default-facility(syslog) default-priority(emerg)); };

Define a source only once. The same source can be used in several log paths. Duplicating sources causes syslog-ng
to open the source (TCP/IP port, file, and so on) more than once, which might cause problems. For example,
include the /dev/log file source only in one source statement, and use this statement in more than one log path
if needed.

Note
Sources and destinations are initialized only when they are used in a log statement. For example, syslog-ng OSE starts listening
on a port or starts polling a file only if the source is used in a log statement. For details on creating log statements, see Chapter
8, Routing messages: log paths and filters (p. 173).

To collect log messages on a specific platform, it is important to know how the native syslogd communicates on
that platform. The following table summarizes the operation methods of syslogd on some of the tested platforms:

54www.balabit.com

How sources work

MethodPlatform

A SOCK_STREAM unix socket named /dev/log; some
of the distributions switched over to using SOCK_DGRAM,
though applications still work with either method.

Linux

A SOCK_DGRAM unix socket named /var/run/log.BSD flavors

An SVR4 style STREAMS device named /dev/log.Solaris (2.5 or below)

In addition to the STREAMS device used in earlier
versions, 2.6 uses a new multithreaded IPC method called

Solaris (2.6 or above)

door. By default the door used by syslogd is
/etc/.syslog_door.

HP-UX uses a named pipe called /dev/log that is
padded to 2048 bytes, for example source s_hp-ux
{pipe ("/dev/log" pad_size(2048)}.

HP-UX 11 or later

A SOCK_STREAM or SOCK_DGRAM unix socket called
/dev/log.

AIX 5.2 and 5.3

Table 6.1. Communication methods used between the applications and syslogd

Each possible communication mechanism has a corresponding source driver in syslog-ng. For example, to open a
unix socket with SOCK_DGRAM style communication use the driver unix-dgram. The same socket using the
SOCK_STREAM style — as used under Linux — is called unix-stream.

Example 6.4. Source statement on a Linux based operating system
The following source statement collects the following log messages:

■ internal(): Messages generated by syslog-ng.

■ udp(ip(0.0.0.0) port(514)): Messages arriving to the 514/UDP port of any interface of the host.

■ unix-stream("/dev/log");: Messages arriving to the /dev/log socket.

source s_demo {
internal();
udp(ip(0.0.0.0) port(514));
unix-stream("/dev/log"); };

The following table lists the source drivers available in syslog-ng.

DescriptionName

Messages generated internally in syslog-ng.internal()

Opens the specified file and reads messages.file()

Reads messages from the process accounting logs on
Linux.

pacct()

Opens the specified named pipe and reads messages.pipe()

Opens the specified application and reads messages from
its standard output.

program()

55www.balabit.com

How sources work

DescriptionName

Opens the specified STREAMS device on Solaris systems
and reads incoming messages.

sun-stream(), sun-streams()

Listens for incoming messages using the new
IETF-standard syslog protocol.

syslog()

Automatically detects which platform syslog-ng OSE is
running on, and collects the native log messages of that
platform.

system()

Listens on the specified TCP port for incoming messages
using the BSD-syslog protocol over IPv4 and IPv6 networks,
respectively.

tcp(), tcp6()

Listens on the specified UDP port for incoming messages
using the BSD-syslog protocol over IPv4 and IPv6 networks,
respectively.

udp(), udp6()

Opens the specified unix socket in SOCK_DGRAM mode
and listens for incoming messages.

unix-dgram()

Opens the specified unix socket in SOCK_STREAMmode
and listens for incoming messages.

unix-stream()

Table 6.2. Source drivers available in syslog-ng

6.2. Collecting internal messages

All messages generated internally by syslog-ng use this special source. To collect warnings, errors and notices from
syslog-ng itself, include this source in one of your source statements.

internal()

The syslog-ng application will issue a warning upon startup if none of the defined log paths reference this driver.

Example 6.5. Using the internal() driver

source s_local { internal(); };

The syslog-ng OSE application sends the following message types from the internal() source:

■ fatal: Priority value: critical (2); Facility value: syslog (5)

■ error: Priority value: error (3); Facility value: syslog (5)

■ warning: Priority value: warning (4); Facility value: syslog (5)

■ notice: Priority value: notice (5); Facility value: syslog (5)

■ info: Priority value: info (6); Facility value: syslog (5)

56www.balabit.com

Collecting internal messages

6.2.1. internal() source options

The internal() driver has the following options:

tags()
stringType:

Default:

Description: Label the messages received from the source with custom tags. Tags must be unique, and enclosed
between double quotes. When adding multiple tags, separate them with comma, for example tags("dmz",
"router"). This option is available only in syslog-ng 3.1 and later.

6.3. Collecting messages from text files

Collects log messages from plain-text files, for example from the logfiles of an Apache webserver.

The syslog-ng application notices if a file is renamed or replaced with a new file, so it can correctly follow the file
even if logrotation is used. When syslog-ng is restarted, it records the position of the last sent log message in the
/opt/syslog-ng/var/syslog-ng.persist file, and continues to send messages from this position after the
restart.

The file driver has a single required parameter specifying the file to open. For the list of available optional parameters,
see Section 6.3.2, file() source options (p. 58).

Declaration:
file(filename);

Example 6.6. Using the file() driver

source s_file { file("/var/log/messages"); };

Example 6.7. Tailing files
The following source checks the access.log file every second for new messages.

source s_tail { file("/var/log/apache/access.log"
follow_freq(1) flags(no-parse)); };

Note
If the message does not have a proper syslog header, syslog-ng treats messages received from files as sent by the kern facility.
Use the default-facility and default-priority options in the source definition to assign a different facility if
needed.

6.3.1. Notes on reading kernel messages

Note the following points when reading kernel messages on various platforms.

57www.balabit.com

internal() source options

■ The kernel usually sends log messages to a special file (/dev/kmsg on BSDs, /proc/kmsg on Linux).
The file() driver reads log messages from such files. The syslog-ng application can periodically check
the file for new log messages if the follow_freq() option is set.

■ On Linux, the klogd daemon can be used in addition to syslog-ng to read kernel messages and forward
them to syslog-ng. klogd used to preprocess kernel messages to resolve symbols and so on, but as this
is deprecated by ksymoops there is really no point in running both klogd and syslog-ng in parallel.
Also note that running two processes reading /proc/kmsg at the same time might result in dead-locks.

■ When using syslog-ng to read messages from the /proc/kmsg file, syslog-ng automatically disables the
follow_freq() parameter to avoid blocking the file.

■ To read the kernel messages on HP-UX platforms, use the following options in the source statement:

file("/dev/klog" program_override("kernel") flags(kernel) follow_freq(0));

6.3.2. file() source options

The file() driver has the following options:

default-facility()
facility stringType:
kernDefault:

Description: This parameter assigns a facility value to the messages received from the file source, if the message
does not specify one.

default-priority()
priority stringType:

Default:

Description: This parameter assigns an emergency level to the messages received from the file source, if the message
does not specify one.

file()
filename with pathType:

Default:

Description: The file to read messages from.

encoding()
stringType:

Default:

58www.balabit.com

file() source options

Description: Specifies the characterset (encoding, for example UTF-8) of messages using the legacy BSD-syslog
protocol. To list the available character sets on a host, execute the iconv -l command.

flags()
empty-lines, expect-hostname, kernel, no-multi-line,
no-parse, store-legacy-msghdr, syslog-protocol,
validate-utf8

Type:

empty setDefault:

Description: Specifies the log parsing options of the source.

■ empty-lines: Use the empty-lines flag to keep the empty lines of the messages. By default, syslog-ng
OSE removes empty lines automatically.

■ expect-hostname: If the expect-hostname flag is enabled, syslog-ng OSE will assume that the log message
contains a hostname and parse the message accordingly. This is the default behavior for TCP sources.
Note that pipe sources use the no-hostname flag by default.

■ kernel: The kernel flag makes the source default to the LOG_KERN | LOG_NOTICE priority if not
specified otherwise.

■ no-hostname: Enable the no-hostname flag if the log message does not include the hostname of the
sender host. That way syslog-ng OSE assumes that the first part of the message header is ${PROGRAM}
instead of ${HOST}. For example:

source s_dell { udp(port(2000) flags(no-hostname)); };

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line. Note that this happens only if the underlying transport method actually
supports multi-line messages. Currently the syslog, udp, unix-dgram drivers support multi-line
messages; other drivers, for example, the tcp driver does not.

■ no-parse: By default, syslog-ng OSE parses incoming messages as syslog messages. The no-parse flag
completely disables syslog message parsing and processes the complete line as the message part of a
syslog message. The syslog-ng OSE application will generate a new syslog header (timestamp, host, and
so on) automatically and put the entire incoming message into the MSG part of the syslog message. This
flag is useful for parsing messages not complying to the syslog format.

■ dont-store-legacy-msghdr: By default, syslog-ng stores the original incoming header of the log message. This
is useful of the original format of a non-syslog-compliant message must be retained (syslog-ng
automatically corrects minor header errors, for example, adds a whitespace before msg in the following
message: Jan 22 10:06:11 host program:msg). If you do not want to store the original header
of the message, enable the dont-store-legacy-msghdr flag.

■ syslog-protocol: The syslog-protocol flag specifies that incoming messages are expected to be formatted
according to the new IETF syslog protocol standard (RFC5424), but without the frame header. Note
that this flag is not needed for the syslog driver, which handles only messages that have a frame header.

■ validate-utf8: The validate-utf8 flag enables encoding-verification for messages formatted according
to the new IETF syslog standard (for details, see Section 2.8.2, IETF-syslog messages (p. 12)). If the BOM

The byte order mark (BOM) is a Unicode character used to signal the byte-order of the message text.

59www.balabit.com

file() source options

character is missing, but the message is otherwise UTF-8 compliant, syslog-ng automatically adds the
BOM character to the message.

follow_freq()
numberType:
1Default:

Description: Indicates that the source should be checked periodically. This is useful for files which always indicate
readability, even though no new lines were appended. If this value is higher than zero, syslog-ng will not attempt
to use poll() on the file, but checks whether the file changed every time the follow_freq() interval (in seconds)
has elapsed. Floating-point numbers (for example 1.5) can be used as well.

keep_timestamp()
yes or noType:
yesDefault:

Description: Specifies whether syslog-ng should accept the timestamp received from the sending application or
client. If disabled, the time of reception will be used instead. This option can be specified globally, and per-source
as well. The local setting of the source overrides the global option if available.

log_fetch_limit()
numberType:
10Default:

Description: The maximum number of messages fetched from a source during a single poll loop. The destination
queues might fill up before flow-control could stop reading if log_fetch_limit() is too high.

log_iw_size()
numberType:
1000Default:

Description: The size of the initial window, this value is used during flow control. If the max-connections()
option is set, the log_iw_size() will be divided by the number of connections, otherwise log_iw_size() is
divided by 10 (the default value of the max-connections() option). The resulting number is the initial window
size of each connection.

Example 6.8. Initial window size of a connection
If log_iw_size(1000) and max-connections(10), then each connection will have an initial window size of 100.

60www.balabit.com

file() source options

log_msg_size()
numberType:
Use the global log_msg_size() option, which defaults to 8192.Default:

Description: Specifies the maximum length of incoming log messages. Uses the value of the global option if not
specified.

log_prefix() (DEPRECATED)
stringType:

Default:

Description: A string added to the beginning of every log message. It can be used to add an arbitrary string to any
log source, though it is most commonly used for adding kernel: to the kernel messages on Linux. NOTE: This
option is deprecated. Use program_override() instead.

optional()
yes or noType:

Default:

Description: Instruct syslog-ng to ignore the error if a specific source cannot be initialized. No other attempts to
initialize the source will be made until the configuration is reloaded. This option currently applies to the pipe(),
unix-dgram, and unix-stream drivers.

pad_size()
numberType:
0Default:

Description: Specifies input padding. Some operating systems (such as HP-UX) pad all messages to block boundary.
This option can be used to specify the block size. (HP-UX uses 2048 bytes). The syslog-ng OSE application will
pad reads from the associated device to the number of bytes set in pad_size(). Mostly used on HP-UX where
/dev/log is a named pipe and every write is padded to 2048 bytes. If pad_size was given and the incoming
message does not fit into pad_size, syslog-ng will not read anymore from this pipe and displays the following
error message:

Padding was set, and couldn't read enough bytes

program_override()
stringType:

Default:

Description: Replaces the ${PROGRAM} part of the message with the parameter string. For example, to mark
every message coming from the kernel, include the program_override("kernel") option in the source
containing /proc/kmsg. NOTE: This option replaces the deprecated log_prefix() option.

61www.balabit.com

file() source options

tags()
stringType:

Default:

Description: Label the messages received from the source with custom tags. Tags must be unique, and enclosed
between double quotes. When adding multiple tags, separate them with comma, for example tags("dmz",
"router"). This option is available only in syslog-ng 3.1 and later.

time_zone()
timezone in +/-HH:MM formatType:

Default:

Description: The default timezone for messages read from the source. Applies only if no timezone is specified
within the message itself.

6.4. Collecting messages using the RFC3164 protocol

The network() destination driver can receive syslog messages conforming to RFC3164 from the network using the
TCP, TLS, and UDP networking protocols.

Example 6.9. Using the network() driver
TCP source listening on the localhost on port 2222 without using the network() driver.

source s_tcp6 {
tcp6(

ip("::1")
port(2222)

);
};

TCP source listening on the localhost on port 2222 using the network() driver.

source s_network6 {
network(

ip("::1")
transport("tcp")
port(2222)
ip-protocol(6)

);
};

Note
For details on the tcp(), tcp6(), udp(), udp6() drivers, see Section 6.11, Collecting messages from remote hosts using the BSD
syslog protocol (p. 92).

6.4.1. network() source options

The network() driver has the following options.

62www.balabit.com

Collecting messages using the RFC3164 protocol

flags()
empty-lines, expect-hostname, kernel, no-multi-line,
no-parse, store-legacy-msghdr, syslog-protocol,
validate-utf8

Type:

empty setDefault:

Description: Specifies the log parsing options of the source.

■ empty-lines: Use the empty-lines flag to keep the empty lines of the messages. By default, syslog-ng
OSE removes empty lines automatically.

■ expect-hostname: If the expect-hostname flag is enabled, syslog-ng OSE will assume that the log message
contains a hostname and parse the message accordingly. This is the default behavior for TCP sources.
Note that pipe sources use the no-hostname flag by default.

■ kernel: The kernel flag makes the source default to the LOG_KERN | LOG_NOTICE priority if not
specified otherwise.

■ no-hostname: Enable the no-hostname flag if the log message does not include the hostname of the
sender host. That way syslog-ng OSE assumes that the first part of the message header is ${PROGRAM}
instead of ${HOST}. For example:

source s_dell { udp(port(2000) flags(no-hostname)); };

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line. Note that this happens only if the underlying transport method actually
supports multi-line messages. Currently the syslog, udp, unix-dgram drivers support multi-line
messages; other drivers, for example, the tcp driver does not.

■ no-parse: By default, syslog-ng OSE parses incoming messages as syslog messages. The no-parse flag
completely disables syslog message parsing and processes the complete line as the message part of a
syslog message. The syslog-ng OSE application will generate a new syslog header (timestamp, host, and
so on) automatically and put the entire incoming message into the MSG part of the syslog message. This
flag is useful for parsing messages not complying to the syslog format.

■ dont-store-legacy-msghdr: By default, syslog-ng stores the original incoming header of the log message. This
is useful of the original format of a non-syslog-compliant message must be retained (syslog-ng
automatically corrects minor header errors, for example, adds a whitespace before msg in the following
message: Jan 22 10:06:11 host program:msg). If you do not want to store the original header
of the message, enable the dont-store-legacy-msghdr flag.

■ syslog-protocol: The syslog-protocol flag specifies that incoming messages are expected to be formatted
according to the new IETF syslog protocol standard (RFC5424), but without the frame header. Note
that this flag is not needed for the syslog driver, which handles only messages that have a frame header.

■ validate-utf8: The validate-utf8 flag enables encoding-verification for messages formatted according
to the new IETF syslog standard (for details, see Section 2.8.2, IETF-syslog messages (p. 12)). If the BOM
character is missing, but the message is otherwise UTF-8 compliant, syslog-ng automatically adds the
BOM character to the message.

The byte order mark (BOM) is a Unicode character used to signal the byte-order of the message text.

63www.balabit.com

network() source options

■ threaded: The threaded flag enables multithreading for the source. For details on multithreading, see
Chapter 15, Multithreading and scaling in syslog-ng OSE (p. 264).

Note
The syslog source uses multiple threads only if the source uses the tls or tcp transport protocols.

host_override()
stringType:

Default:

Description: Replaces the ${HOST} part of the message with the parameter string.

username()

username()
stringType:
0.0.0.0Default:

Description: The IP address to bind to. Note that this is not the address where messages are accepted from.

ip-protocol()
numberType:
4Default:

Description: Determines the internet protocol version of the given driver (network() or syslog()). The
possible values are 4 and 6. The default value is 4.

ip_tos()
numberType:
0Default:

Description: Specifies the Type-of-Service value of outgoing packets.

ip_ttl()
numberType:
0Default:

Description: Specifies the Time-To-Live value of outgoing packets.

64www.balabit.com

network() source options

keep-alive()
yes or noType:
yesDefault:

Description: Specifies whether connections to sources should be closed when syslog-ng is forced to reload its
configuration (upon the receipt of a SIGHUP signal). Note that this applies to the server (source) side of the
syslog-ng connections, client-side (destination) connections are always reopened after receiving a HUP signal unless
the keep-alive option is enabled for the destination.

keep_hostname()
yes or noType:
noDefault:

Description: Enable or disable hostname rewriting.

■ If enabled (keep_hostname(yes)), syslog-ng OSE assumes that the incoming log message was sent
by the host specified in the HOST field of the message.

■ If disabled (keep_hostname(no)), syslog-ng OSE rewrites the HOST field of the message, either to
the IP address (if the use_dns() parameter is set to no), or to the hostname (if the use_dns()
parameter is set to yes and the IP address can be resolved to a hostname) of the host sending the
message to syslog-ng OSE. For details on using name resolution in syslog-ng OSE, see Section 17.4, Using
name resolution in syslog-ng (p. 271).

Note
If the log message does not contain a hostname in its HOST field, syslog-ng OSE automatically adds a hostname to the message.

■ For messages received from the network, this hostname is the address of the host that sent the message (this
means the address of the last hop if the message was transferred via a relay).

■ For messages received from the local host, syslog-ng OSE adds the name of the host.

This option can be specified globally, and per-source as well. The local setting of the source overrides the global
option if available.

Note
When relaying messages, enable this option on the syslog-ng OSE server and also on every relay, otherwise syslog-ng OSE
will treat incoming messages as if they were sent by the last relay.

keep_timestamp()
yes or noType:
yesDefault:

65www.balabit.com

network() source options

Description: Specifies whether syslog-ng should accept the timestamp received from the sending application or
client. If disabled, the time of reception will be used instead. This option can be specified globally, and per-source
as well. The local setting of the source overrides the global option if available.

log_fetch_limit()
numberType:
10Default:

Description: The maximum number of messages fetched from a source during a single poll loop. The destination
queues might fill up before flow-control could stop reading if log_fetch_limit() is too high.

log_iw_size()
numberType:
1000Default:

Description: The size of the initial window, this value is used during flow control. If the max-connections()
option is set, the log_iw_size() will be divided by the number of connections, otherwise log_iw_size() is
divided by 10 (the default value of the max-connections() option). The resulting number is the initial window
size of each connection.

Example 6.10. Initial window size of a connection
If log_iw_size(1000) and max-connections(10), then each connection will have an initial window size of 100.

log_msg_size()
numberType:
Use the global log_msg_size() option, which defaults to 8192.Default:

Description: Specifies the maximum length of incoming log messages. Uses the value of the global option if not
specified.

log_prefix() (DEPRECATED)
stringType:

Default:

Description: A string added to the beginning of every log message. It can be used to add an arbitrary string to any
log source, though it is most commonly used for adding kernel: to the kernel messages on Linux. NOTE: This
option is deprecated. Use program_override() instead.

max-connections()
numberType:
10Default:

66www.balabit.com

network() source options

Description: Specifies the maximum number of simultaneous connections.

pad_size()
numberType:
0Default:

Description: Specifies input padding. Some operating systems (such as HP-UX) pad all messages to block boundary.
This option can be used to specify the block size. (HP-UX uses 2048 bytes). The syslog-ng OSE application will
pad reads from the associated device to the number of bytes set in pad_size(). Mostly used on HP-UX where
/dev/log is a named pipe and every write is padded to 2048 bytes. If pad_size was given and the incoming
message does not fit into pad_size, syslog-ng will not read anymore from this pipe and displays the following
error message:

Padding was set, and couldn't read enough bytes

port() or localport()
numberType:
601Default:

Description: The port number to bind to.

program_override()
stringType:

Default:

Description: Replaces the ${PROGRAM} part of the message with the parameter string. For example, to mark
every message coming from the kernel, include the program_override("kernel") option in the source
containing /proc/kmsg. NOTE: This option replaces the deprecated log_prefix() option.

so_broadcast()
yes or noType:
noDefault:

Description: This option controls the SO_BROADCAST socket option required to make syslog-ng send messages
to a broadcast address. For details, see the socket(7) manual page.

so_keepalive()
yes or noType:
noDefault:

Description: Enables keep-alive messages, keeping the socket open. This only effects TCP and UNIX-stream
sockets. For details, see the socket(7) manual page.

67www.balabit.com

network() source options

so_rcvbuf()
numberType:
0Default:

Description: Specifies the size of the socket receive buffer in bytes. For details, see the socket(7) manual page.

Warning
When receiving messages using the UDP protocol, increase the size of the UDP receive buffer on the receiver host (that is,
the syslog-ng OSE server or relay receiving the messages). Note that on certain platforms, for example, on Red Hat Enterprise
Linux 5, even low message load (~200 messages per second) can result in message loss, unless the so_rcvbuf() option of
the source is increased. In such cases, you will need to increase the net.core.rmem_max parameter of the host (for example,
to 1024000), but do not modify net.core.rmem_default parameter.

As a general rule, increase the so_rcvbuf() so that the buffer size in kilobytes is higher than the rate of incoming messages
per second. For example, to receive 2000 messages per second, set the so_rcvbuf() at least to 2 097 152 bytes.

so_sndbuf()
numberType:
0Default:

Description:Specifies the size of the socket send buffer in bytes. For details, see the socket(7) manual page.

tags()
stringType:

Default:

Description: Label the messages received from the source with custom tags. Tags must be unique, and enclosed
between double quotes. When adding multiple tags, separate them with comma, for example tags("dmz",
"router"). This option is available only in syslog-ng 3.1 and later.

tcp-keep-alive()
yes or noType:
noDefault:

Description: This is an obsolete alias of the so_keepalive() option.

time_zone()
timezone in +/-HH:MM formatType:

Default:

Description: The default timezone for messages read from the source. Applies only if no timezone is specified
within the message itself.

68www.balabit.com

network() source options

transport()
udp, tcp, or tlsType:
tcpDefault:

Description: Specifies the protocol used to receive messages from the source.

Warning
When receiving messages using the UDP protocol, increase the size of the UDP receive buffer on the receiver host (that is,
the syslog-ng OSE server or relay receiving the messages). Note that on certain platforms, for example, on Red Hat Enterprise
Linux 5, even low message load (~200 messages per second) can result in message loss, unless the so_rcvbuf() option of
the source is increased. In such cases, you will need to increase the net.core.rmem_max parameter of the host (for example,
to 1024000), but do not modify net.core.rmem_default parameter.

As a general rule, increase the so_rcvbuf() so that the buffer size in kilobytes is higher than the rate of incoming messages
per second. For example, to receive 2000 messages per second, set the so_rcvbuf() at least to 2 097 152 bytes.

tls()
tls optionsType:
n/aDefault:

Description: This option sets various options related to TLS encryption, for example, key/certificate files and
trusted CA locations. TLS can be used only with tcp-based transport protocols. For details, see Section 10.4, TLS
options (p. 208).

use_dns()
yes, no, persist_onlyType:
yesDefault:

Description: Enable or disable DNS usage. The persist_only option attempts to resolve hostnames locally
from file (for example from /etc/hosts). The syslog-ng OSE application blocks on DNS queries, so enabling
DNS may lead to a Denial of Service attack. To prevent DoS, protect your syslog-ng network endpoint with firewall
rules, and make sure that all hosts which may get to syslog-ng are resolvable. This option can be specified globally,
and per-source as well. The local setting of the source overrides the global option if available.

use_fqdn()
yes or noType:
noDefault:

Description: Add Fully Qualified Domain Name instead of short hostname. This option can be specified globally,
and per-source as well. The local setting of the source overrides the global option if available.

6.5. Collecting messages from named pipes

The pipe driver opens a named pipe with the specified name and listens for messages. It is used as the native message
delivery protocol on HP-UX.

69www.balabit.com

Collecting messages from named pipes

The pipe driver has a single required parameter, specifying the filename of the pipe to open. For the list of available
optional parameters, see Section 6.5.1, pipe() source options (p. 70).

Declaration:
pipe(filename);

Note
As of syslog-ng Open Source Edition 3.0.2, pipes are created automatically. In earlier versions, you had to create the pipe
using the mkfifo(1) command.

Pipe is very similar to the file() driver, but there are a few differences, for example pipe() opens its argument
in read-write mode, therefore it is not recommended to be used on special files like /proc/kmsg.

Warning

■ It is not recommended to use pipe() on anything else than real pipes.

■ By default, syslog-ng OSE uses the flags(no-hostname) option for pipes, meaning that syslog-ng OSE
assumes that the log messages received from the pipe do not contain the hostname field. If your messages do
contain the hostname field, use flags(expect-hostname). For details, see Section flags() (p. 70).

Example 6.11. Using the pipe() driver

source s_pipe { pipe("/dev/pipe" pad_size(2048)); };

6.5.1. pipe() source options

The pipe driver has the following options:

flags()
empty-lines, expect-hostname, kernel, no-multi-line,
no-parse, store-legacy-msghdr, syslog-protocol,
validate-utf8

Type:

empty setDefault:

Description: Specifies the log parsing options of the source.

■ empty-lines: Use the empty-lines flag to keep the empty lines of the messages. By default, syslog-ng
OSE removes empty lines automatically.

■ expect-hostname: If the expect-hostname flag is enabled, syslog-ng OSE will assume that the log message
contains a hostname and parse the message accordingly. This is the default behavior for TCP sources.
Note that pipe sources use the no-hostname flag by default.

■ kernel: The kernel flag makes the source default to the LOG_KERN | LOG_NOTICE priority if not
specified otherwise.

70www.balabit.com

pipe() source options

■ no-hostname: Enable the no-hostname flag if the log message does not include the hostname of the
sender host. That way syslog-ng OSE assumes that the first part of the message header is ${PROGRAM}
instead of ${HOST}. For example:

source s_dell { udp(port(2000) flags(no-hostname)); };

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line. Note that this happens only if the underlying transport method actually
supports multi-line messages. Currently the syslog, udp, unix-dgram drivers support multi-line
messages; other drivers, for example, the tcp driver does not.

■ no-parse: By default, syslog-ng OSE parses incoming messages as syslog messages. The no-parse flag
completely disables syslog message parsing and processes the complete line as the message part of a
syslog message. The syslog-ng OSE application will generate a new syslog header (timestamp, host, and
so on) automatically and put the entire incoming message into the MSG part of the syslog message. This
flag is useful for parsing messages not complying to the syslog format.

■ dont-store-legacy-msghdr: By default, syslog-ng stores the original incoming header of the log message. This
is useful of the original format of a non-syslog-compliant message must be retained (syslog-ng
automatically corrects minor header errors, for example, adds a whitespace before msg in the following
message: Jan 22 10:06:11 host program:msg). If you do not want to store the original header
of the message, enable the dont-store-legacy-msghdr flag.

■ syslog-protocol: The syslog-protocol flag specifies that incoming messages are expected to be formatted
according to the new IETF syslog protocol standard (RFC5424), but without the frame header. Note
that this flag is not needed for the syslog driver, which handles only messages that have a frame header.

■ validate-utf8: The validate-utf8 flag enables encoding-verification for messages formatted according
to the new IETF syslog standard (for details, see Section 2.8.2, IETF-syslog messages (p. 12)). If the BOM
character is missing, but the message is otherwise UTF-8 compliant, syslog-ng automatically adds the
BOM character to the message.

follow_freq()
numberType:
1Default:

Description: Indicates that the source should be checked periodically. This is useful for files which always indicate
readability, even though no new lines were appended. If this value is higher than zero, syslog-ng will not attempt
to use poll() on the file, but checks whether the file changed every time the follow_freq() interval (in seconds)
has elapsed. Floating-point numbers (for example 1.5) can be used as well.

keep_timestamp()
yes or noType:
yesDefault:

Description: Specifies whether syslog-ng should accept the timestamp received from the sending application or
client. If disabled, the time of reception will be used instead. This option can be specified globally, and per-source
as well. The local setting of the source overrides the global option if available.

The byte order mark (BOM) is a Unicode character used to signal the byte-order of the message text.

71www.balabit.com

pipe() source options

log_fetch_limit()
numberType:
10Default:

Description: The maximum number of messages fetched from a source during a single poll loop. The destination
queues might fill up before flow-control could stop reading if log_fetch_limit() is too high.

log_iw_size()
numberType:
1000Default:

Description: The size of the initial window, this value is used during flow control. If the max-connections()
option is set, the log_iw_size() will be divided by the number of connections, otherwise log_iw_size() is
divided by 10 (the default value of the max-connections() option). The resulting number is the initial window
size of each connection.

Example 6.12. Initial window size of a connection
If log_iw_size(1000) and max-connections(10), then each connection will have an initial window size of 100.

log_msg_size()
numberType:
Use the global log_msg_size() option, which defaults to 8192.Default:

Description: Specifies the maximum length of incoming log messages. Uses the value of the global option if not
specified.

log_prefix() (DEPRECATED)
stringType:

Default:

Description: A string added to the beginning of every log message. It can be used to add an arbitrary string to any
log source, though it is most commonly used for adding kernel: to the kernel messages on Linux. NOTE: This
option is deprecated. Use program_override() instead.

optional()
yes or noType:

Default:

Description: Instruct syslog-ng to ignore the error if a specific source cannot be initialized. No other attempts to
initialize the source will be made until the configuration is reloaded. This option currently applies to the pipe(),
unix-dgram, and unix-stream drivers.

72www.balabit.com

pipe() source options

pad_size()
numberType:
0Default:

Description: Specifies input padding. Some operating systems (such as HP-UX) pad all messages to block boundary.
This option can be used to specify the block size. (HP-UX uses 2048 bytes). The syslog-ng OSE application will
pad reads from the associated device to the number of bytes set in pad_size(). Mostly used on HP-UX where
/dev/log is a named pipe and every write is padded to 2048 bytes. If pad_size was given and the incoming
message does not fit into pad_size, syslog-ng will not read anymore from this pipe and displays the following
error message:

Padding was set, and couldn't read enough bytes

pipe()
filename with pathType:

Default:

Description: The filename of the pipe to read messages from.

program_override()
stringType:

Default:

Description: Replaces the ${PROGRAM} part of the message with the parameter string. For example, to mark
every message coming from the kernel, include the program_override("kernel") option in the source
containing /proc/kmsg. NOTE: This option replaces the deprecated log_prefix() option.

tags()
stringType:

Default:

Description: Label the messages received from the source with custom tags. Tags must be unique, and enclosed
between double quotes. When adding multiple tags, separate them with comma, for example tags("dmz",
"router"). This option is available only in syslog-ng 3.1 and later.

time_zone()
timezone in +/-HH:MM formatType:

Default:

Description: The default timezone for messages read from the source. Applies only if no timezone is specified
within the message itself.

73www.balabit.com

pipe() source options

6.6. Collecting process accounting logs on Linux

Starting with version 3.2, syslog-ng OSE can collect process accounting logs on Linux systems.Process accounting
is the method of recording and summarizing commands executed on Linux, for example, the commands being run,
the user who executed the command, CPU time used by the process, exit code, and so on. When process accounting
(also called pacct) is enabled on a system, the kernel writes accounting records to the /var/log/account/pacct
file (might vary between different Linux distributions).

To use the pacct() driver, the following conditions must be met:

■ The syslog-ng OSE application must be compiled with the --enable-pacct option. Execute the
syslog-ng -V command to check if your binary supports process accounting.

■ The pacctformat plugin must be loaded. By default, syslog-ng OSE automatically loads the available
modules.

■ The scl.conf file must be included in your syslog-ng configuration:

@include "scl.conf"

■ Process accounting must be running on the host. You can enable it with the accton command.

The pacct() driver parses the fields of the accounting logs and transforms them into name-value pairs. The fields
are defined in the manual page of the accounting log file (man acct), syslog-ng OSE prepends every field with
the .pacct. prefix. For example, the ac_uid field that contains the id of the user who started the process will
be available under the $.pacct.ac_uid name. These can be used as macros in templates, in filters to select
specific messages, and so on.

To use the pacct() driver, use the following syntax.

@version: @techversion;
@include "scl.conf"
source s_pacct { pacct(); };
...
log { source(s_pacct); destination(...); };

6.6.1. pacct() options

The pacct() driver has the following options:

file
filename with pathType:
/var/log/account/pacctDefault:

Description: The file where the process accounting logs are stored — syslog-ng OSE reads accounting messages
from this file.

follow_freq()
numberType:
1Default:

74www.balabit.com

Collecting process accounting logs on Linux

Description: Indicates that the source should be checked periodically. This is useful for files which always indicate
readability, even though no new lines were appended. If this value is higher than zero, syslog-ng will not attempt
to use poll() on the file, but checks whether the file changed every time the follow_freq() interval (in seconds)
has elapsed. Floating-point numbers (for example 1.5) can be used as well.

6.7. Receiving messages from external applications

The program driver starts an external application and reads messages from the standard output (stdout) of the
application. It is mainly useful to receive log messages from daemons that accept incoming messages and convert
them to log messages.

The program driver has a single required parameter, specifying the name of the application to start.

Declaration:
program(filename);

Example 6.13. Using the program() driver

source s_program { program("/etc/init.d/mydaemon"); };

Note
The program is restarted automatically if it exits.

6.7.1. program() source options

The program driver has the following options:

flags()
empty-lines, expect-hostname, kernel, no-multi-line,
no-parse, store-legacy-msghdr, syslog-protocol,
validate-utf8

Type:

empty setDefault:

Description: Specifies the log parsing options of the source.

■ empty-lines: Use the empty-lines flag to keep the empty lines of the messages. By default, syslog-ng
OSE removes empty lines automatically.

■ expect-hostname: If the expect-hostname flag is enabled, syslog-ng OSE will assume that the log message
contains a hostname and parse the message accordingly. This is the default behavior for TCP sources.
Note that pipe sources use the no-hostname flag by default.

■ kernel: The kernel flag makes the source default to the LOG_KERN | LOG_NOTICE priority if not
specified otherwise.

75www.balabit.com

Receiving messages from external applications

■ no-hostname: Enable the no-hostname flag if the log message does not include the hostname of the
sender host. That way syslog-ng OSE assumes that the first part of the message header is ${PROGRAM}
instead of ${HOST}. For example:

source s_dell { udp(port(2000) flags(no-hostname)); };

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line. Note that this happens only if the underlying transport method actually
supports multi-line messages. Currently the syslog, udp, unix-dgram drivers support multi-line
messages; other drivers, for example, the tcp driver does not.

■ no-parse: By default, syslog-ng OSE parses incoming messages as syslog messages. The no-parse flag
completely disables syslog message parsing and processes the complete line as the message part of a
syslog message. The syslog-ng OSE application will generate a new syslog header (timestamp, host, and
so on) automatically and put the entire incoming message into the MSG part of the syslog message. This
flag is useful for parsing messages not complying to the syslog format.

■ dont-store-legacy-msghdr: By default, syslog-ng stores the original incoming header of the log message. This
is useful of the original format of a non-syslog-compliant message must be retained (syslog-ng
automatically corrects minor header errors, for example, adds a whitespace before msg in the following
message: Jan 22 10:06:11 host program:msg). If you do not want to store the original header
of the message, enable the dont-store-legacy-msghdr flag.

■ syslog-protocol: The syslog-protocol flag specifies that incoming messages are expected to be formatted
according to the new IETF syslog protocol standard (RFC5424), but without the frame header. Note
that this flag is not needed for the syslog driver, which handles only messages that have a frame header.

■ validate-utf8: The validate-utf8 flag enables encoding-verification for messages formatted according
to the new IETF syslog standard (for details, see Section 2.8.2, IETF-syslog messages (p. 12)). If the BOM
character is missing, but the message is otherwise UTF-8 compliant, syslog-ng automatically adds the
BOM character to the message.

follow_freq()
numberType:
1Default:

Description: Indicates that the source should be checked periodically. This is useful for files which always indicate
readability, even though no new lines were appended. If this value is higher than zero, syslog-ng will not attempt
to use poll() on the file, but checks whether the file changed every time the follow_freq() interval (in seconds)
has elapsed. Floating-point numbers (for example 1.5) can be used as well.

keep_timestamp()
yes or noType:
yesDefault:

Description: Specifies whether syslog-ng should accept the timestamp received from the sending application or
client. If disabled, the time of reception will be used instead. This option can be specified globally, and per-source
as well. The local setting of the source overrides the global option if available.

The byte order mark (BOM) is a Unicode character used to signal the byte-order of the message text.

76www.balabit.com

program() source options

log_fetch_limit()
numberType:
10Default:

Description: The maximum number of messages fetched from a source during a single poll loop. The destination
queues might fill up before flow-control could stop reading if log_fetch_limit() is too high.

log_iw_size()
numberType:
1000Default:

Description: The size of the initial window, this value is used during flow control. If the max-connections()
option is set, the log_iw_size() will be divided by the number of connections, otherwise log_iw_size() is
divided by 10 (the default value of the max-connections() option). The resulting number is the initial window
size of each connection.

Example 6.14. Initial window size of a connection
If log_iw_size(1000) and max-connections(10), then each connection will have an initial window size of 100.

log_msg_size()
numberType:
Use the global log_msg_size() option, which defaults to 8192.Default:

Description: Specifies the maximum length of incoming log messages. Uses the value of the global option if not
specified.

log_prefix() (DEPRECATED)
stringType:

Default:

Description: A string added to the beginning of every log message. It can be used to add an arbitrary string to any
log source, though it is most commonly used for adding kernel: to the kernel messages on Linux. NOTE: This
option is deprecated. Use program_override() instead.

optional()
yes or noType:

Default:

Description: Instruct syslog-ng to ignore the error if a specific source cannot be initialized. No other attempts to
initialize the source will be made until the configuration is reloaded. This option currently applies to the pipe(),
unix-dgram, and unix-stream drivers.

77www.balabit.com

program() source options

pad_size()
numberType:
0Default:

Description: Specifies input padding. Some operating systems (such as HP-UX) pad all messages to block boundary.
This option can be used to specify the block size. (HP-UX uses 2048 bytes). The syslog-ng OSE application will
pad reads from the associated device to the number of bytes set in pad_size(). Mostly used on HP-UX where
/dev/log is a named pipe and every write is padded to 2048 bytes. If pad_size was given and the incoming
message does not fit into pad_size, syslog-ng will not read anymore from this pipe and displays the following
error message:

Padding was set, and couldn't read enough bytes

program
filename with pathType:

Default:

Description: The name of the application to start and read messages from.

program_override()
stringType:

Default:

Description: Replaces the ${PROGRAM} part of the message with the parameter string. For example, to mark
every message coming from the kernel, include the program_override("kernel") option in the source
containing /proc/kmsg. NOTE: This option replaces the deprecated log_prefix() option.

tags()
stringType:

Default:

Description: Label the messages received from the source with custom tags. Tags must be unique, and enclosed
between double quotes. When adding multiple tags, separate them with comma, for example tags("dmz",
"router"). This option is available only in syslog-ng 3.1 and later.

time_zone()
timezone in +/-HH:MM formatType:

Default:

Description: The default timezone for messages read from the source. Applies only if no timezone is specified
within the message itself.

78www.balabit.com

program() source options

6.8. Collecting messages on Sun Solaris

Solaris uses its STREAMS framework to send messages to the syslogd process. Solaris 2.5.1 and above uses an
IPC called door in addition to STREAMS, to confirm the delivery of a message. The syslog-ng application supports
the IPC mechanism via the door() option (see below).

Note
The sun-streams() driver must be enabled when the syslog-ng application is compiled (see ./configure --help).

The sun-streams() driver has a single required argument specifying the STREAMS device to open, and the
door() option. For the list of available optional parameters, see Section 6.8.1, sun-streams() source options (p. 79).

Declaration:
sun-streams(name_of_the_streams_device door(filename_of_the_door));

Example 6.15. Using the sun-streams() driver

source s_stream { sun-streams("/dev/log" door("/etc/.syslog_door")); };

6.8.1. sun-streams() source options

The sun-streams() driver has the following options.

door()
stringType:
noneDefault:

Description: Specifies the filename of a door to open, needed on Solaris above 2.5.1.

flags()
empty-lines, expect-hostname, kernel, no-multi-line,
no-parse, store-legacy-msghdr, syslog-protocol,
validate-utf8

Type:

empty setDefault:

Description: Specifies the log parsing options of the source.

■ empty-lines: Use the empty-lines flag to keep the empty lines of the messages. By default, syslog-ng
OSE removes empty lines automatically.

■ expect-hostname: If the expect-hostname flag is enabled, syslog-ng OSE will assume that the log message
contains a hostname and parse the message accordingly. This is the default behavior for TCP sources.
Note that pipe sources use the no-hostname flag by default.

79www.balabit.com

Collecting messages on Sun Solaris

■ kernel: The kernel flag makes the source default to the LOG_KERN | LOG_NOTICE priority if not
specified otherwise.

■ no-hostname: Enable the no-hostname flag if the log message does not include the hostname of the
sender host. That way syslog-ng OSE assumes that the first part of the message header is ${PROGRAM}
instead of ${HOST}. For example:

source s_dell { udp(port(2000) flags(no-hostname)); };

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line. Note that this happens only if the underlying transport method actually
supports multi-line messages. Currently the syslog, udp, unix-dgram drivers support multi-line
messages; other drivers, for example, the tcp driver does not.

■ no-parse: By default, syslog-ng OSE parses incoming messages as syslog messages. The no-parse flag
completely disables syslog message parsing and processes the complete line as the message part of a
syslog message. The syslog-ng OSE application will generate a new syslog header (timestamp, host, and
so on) automatically and put the entire incoming message into the MSG part of the syslog message. This
flag is useful for parsing messages not complying to the syslog format.

■ dont-store-legacy-msghdr: By default, syslog-ng stores the original incoming header of the log message. This
is useful of the original format of a non-syslog-compliant message must be retained (syslog-ng
automatically corrects minor header errors, for example, adds a whitespace before msg in the following
message: Jan 22 10:06:11 host program:msg). If you do not want to store the original header
of the message, enable the dont-store-legacy-msghdr flag.

■ syslog-protocol: The syslog-protocol flag specifies that incoming messages are expected to be formatted
according to the new IETF syslog protocol standard (RFC5424), but without the frame header. Note
that this flag is not needed for the syslog driver, which handles only messages that have a frame header.

■ validate-utf8: The validate-utf8 flag enables encoding-verification for messages formatted according
to the new IETF syslog standard (for details, see Section 2.8.2, IETF-syslog messages (p. 12)). If the BOM
character is missing, but the message is otherwise UTF-8 compliant, syslog-ng automatically adds the
BOM character to the message.

follow_freq()
numberType:
1Default:

Description: Indicates that the source should be checked periodically. This is useful for files which always indicate
readability, even though no new lines were appended. If this value is higher than zero, syslog-ng will not attempt
to use poll() on the file, but checks whether the file changed every time the follow_freq() interval (in seconds)
has elapsed. Floating-point numbers (for example 1.5) can be used as well.

keep_timestamp()
yes or noType:
yesDefault:

The byte order mark (BOM) is a Unicode character used to signal the byte-order of the message text.

80www.balabit.com

sun-streams() source options

Description: Specifies whether syslog-ng should accept the timestamp received from the sending application or
client. If disabled, the time of reception will be used instead. This option can be specified globally, and per-source
as well. The local setting of the source overrides the global option if available.

log_fetch_limit()
numberType:
10Default:

Description: The maximum number of messages fetched from a source during a single poll loop. The destination
queues might fill up before flow-control could stop reading if log_fetch_limit() is too high.

log_iw_size()
numberType:
1000Default:

Description: The size of the initial window, this value is used during flow control. If the max-connections()
option is set, the log_iw_size() will be divided by the number of connections, otherwise log_iw_size() is
divided by 10 (the default value of the max-connections() option). The resulting number is the initial window
size of each connection.

Example 6.16. Initial window size of a connection
If log_iw_size(1000) and max-connections(10), then each connection will have an initial window size of 100.

log_msg_size()
numberType:
Use the global log_msg_size() option, which defaults to 8192.Default:

Description: Specifies the maximum length of incoming log messages. Uses the value of the global option if not
specified.

log_prefix() (DEPRECATED)
stringType:

Default:

Description: A string added to the beginning of every log message. It can be used to add an arbitrary string to any
log source, though it is most commonly used for adding kernel: to the kernel messages on Linux. NOTE: This
option is deprecated. Use program_override() instead.

optional()
yes or noType:

Default:

81www.balabit.com

sun-streams() source options

Description: Instruct syslog-ng to ignore the error if a specific source cannot be initialized. No other attempts to
initialize the source will be made until the configuration is reloaded. This option currently applies to the pipe(),
unix-dgram, and unix-stream drivers.

pad_size()
numberType:
0Default:

Description: Specifies input padding. Some operating systems (such as HP-UX) pad all messages to block boundary.
This option can be used to specify the block size. (HP-UX uses 2048 bytes). The syslog-ng OSE application will
pad reads from the associated device to the number of bytes set in pad_size(). Mostly used on HP-UX where
/dev/log is a named pipe and every write is padded to 2048 bytes. If pad_size was given and the incoming
message does not fit into pad_size, syslog-ng will not read anymore from this pipe and displays the following
error message:

Padding was set, and couldn't read enough bytes

program_override()
stringType:

Default:

Description: Replaces the ${PROGRAM} part of the message with the parameter string. For example, to mark
every message coming from the kernel, include the program_override("kernel") option in the source
containing /proc/kmsg. NOTE: This option replaces the deprecated log_prefix() option.

tags()
stringType:

Default:

Description: Label the messages received from the source with custom tags. Tags must be unique, and enclosed
between double quotes. When adding multiple tags, separate them with comma, for example tags("dmz",
"router"). This option is available only in syslog-ng 3.1 and later.

time_zone()
timezone in +/-HH:MM formatType:

Default:

Description: The default timezone for messages read from the source. Applies only if no timezone is specified
within the message itself.

6.9. Collecting messages using the IETF syslog protocol

The syslog() driver can receive messages from the network using the standard IETF-syslog protocol (as described
in RFC5424-28). UDP, TCP, and TLS-encrypted TCP can all be used to transport the messages.

82www.balabit.com

Collecting messages using the IETF syslog protocol

Note
The syslog() driver can also receive BSD-syslog-formatted messages (described in RFC 3164, see Section 2.8.1, BSD-syslog
or legacy-syslog messages (p. 10)) if they are sent using the IETF-syslog protocol.

In syslog-ng OSE versions 3.1 and earlier, the syslog() driver could handle only messages in the IETF-syslog (RFC 5424-28)
format.

For the list of available optional parameters, see Section 6.9.1, syslog() source options (p. 83).

Declaration:
syslog(ip() port() transport() options());

Example 6.17. Using the syslog() driver
TCP source listening on the localhost on port 1999.

source s_syslog { syslog(ip(127.0.0.1) port(1999) transport("tcp")); };

UDP source with defaults.

source s_udp { syslog(transport("udp")); };

Encrypted source where the client is also authenticated. For details on the encryption settings, see Section 10.4, TLS options (p. 208).

source s_syslog_tls{ syslog(
ip(10.100.20.40)
transport("tls")
tls(
peer-verify(required-trusted)
ca_dir('/opt/syslog-ng/etc/syslog-ng/keys/ca.d/')
key_file('/opt/syslog-ng/etc/syslog-ng/keys/server_privatekey.pem')
cert_file('/opt/syslog-ng/etc/syslog-ng/keys/server_certificate.pem')
)
);};

Warning
When receiving messages using the UDP protocol, increase the size of the UDP receive buffer on the receiver host (that is,
the syslog-ng OSE server or relay receiving the messages). Note that on certain platforms, for example, on Red Hat Enterprise
Linux 5, even low message load (~200 messages per second) can result in message loss, unless the so_rcvbuf() option of
the source is increased. In such cases, you will need to increase the net.core.rmem_max parameter of the host (for example,
to 1024000), but do not modify net.core.rmem_default parameter.

As a general rule, increase the so_rcvbuf() so that the buffer size in kilobytes is higher than the rate of incoming messages
per second. For example, to receive 2000 messages per second, set the so_rcvbuf() at least to 2 097 152 bytes.

6.9.1. syslog() source options

The syslog() driver has the following options.

flags()
empty-lines, expect-hostname, kernel, no-multi-line,
no-parse, store-legacy-msghdr, syslog-protocol,
validate-utf8

Type:

empty setDefault:

Description: Specifies the log parsing options of the source.

83www.balabit.com

syslog() source options

■ empty-lines: Use the empty-lines flag to keep the empty lines of the messages. By default, syslog-ng
OSE removes empty lines automatically.

■ expect-hostname: If the expect-hostname flag is enabled, syslog-ng OSE will assume that the log message
contains a hostname and parse the message accordingly. This is the default behavior for TCP sources.
Note that pipe sources use the no-hostname flag by default.

■ kernel: The kernel flag makes the source default to the LOG_KERN | LOG_NOTICE priority if not
specified otherwise.

■ no-hostname: Enable the no-hostname flag if the log message does not include the hostname of the
sender host. That way syslog-ng OSE assumes that the first part of the message header is ${PROGRAM}
instead of ${HOST}. For example:

source s_dell { udp(port(2000) flags(no-hostname)); };

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line. Note that this happens only if the underlying transport method actually
supports multi-line messages. Currently the syslog, udp, unix-dgram drivers support multi-line
messages; other drivers, for example, the tcp driver does not.

■ no-parse: By default, syslog-ng OSE parses incoming messages as syslog messages. The no-parse flag
completely disables syslog message parsing and processes the complete line as the message part of a
syslog message. The syslog-ng OSE application will generate a new syslog header (timestamp, host, and
so on) automatically and put the entire incoming message into the MSG part of the syslog message. This
flag is useful for parsing messages not complying to the syslog format.

■ dont-store-legacy-msghdr: By default, syslog-ng stores the original incoming header of the log message. This
is useful of the original format of a non-syslog-compliant message must be retained (syslog-ng
automatically corrects minor header errors, for example, adds a whitespace before msg in the following
message: Jan 22 10:06:11 host program:msg). If you do not want to store the original header
of the message, enable the dont-store-legacy-msghdr flag.

■ syslog-protocol: The syslog-protocol flag specifies that incoming messages are expected to be formatted
according to the new IETF syslog protocol standard (RFC5424), but without the frame header. Note
that this flag is not needed for the syslog driver, which handles only messages that have a frame header.

■ validate-utf8: The validate-utf8 flag enables encoding-verification for messages formatted according
to the new IETF syslog standard (for details, see Section 2.8.2, IETF-syslog messages (p. 12)). If the BOM
character is missing, but the message is otherwise UTF-8 compliant, syslog-ng automatically adds the
BOM character to the message.

■ threaded: The threaded flag enables multithreading for the source. For details on multithreading, see
Chapter 15, Multithreading and scaling in syslog-ng OSE (p. 264).

Note
The syslog source uses multiple threads only if the source uses the tls or tcp transport protocols.

The byte order mark (BOM) is a Unicode character used to signal the byte-order of the message text.

84www.balabit.com

syslog() source options

host_override()
stringType:

Default:

Description: Replaces the ${HOST} part of the message with the parameter string.

username()

username()
stringType:
0.0.0.0Default:

Description: The IP address to bind to. Note that this is not the address where messages are accepted from.

ip-protocol()
numberType:
4Default:

Description: Determines the internet protocol version of the given driver (network() or syslog()). The
possible values are 4 and 6. The default value is 4.

ip_tos()
numberType:
0Default:

Description: Specifies the Type-of-Service value of outgoing packets.

ip_ttl()
numberType:
0Default:

Description: Specifies the Time-To-Live value of outgoing packets.

keep-alive()
yes or noType:
yesDefault:

Description: Specifies whether connections to sources should be closed when syslog-ng is forced to reload its
configuration (upon the receipt of a SIGHUP signal). Note that this applies to the server (source) side of the
syslog-ng connections, client-side (destination) connections are always reopened after receiving a HUP signal unless
the keep-alive option is enabled for the destination.

85www.balabit.com

syslog() source options

keep_hostname()
yes or noType:
noDefault:

Description: Enable or disable hostname rewriting.

■ If enabled (keep_hostname(yes)), syslog-ng OSE assumes that the incoming log message was sent
by the host specified in the HOST field of the message.

■ If disabled (keep_hostname(no)), syslog-ng OSE rewrites the HOST field of the message, either to
the IP address (if the use_dns() parameter is set to no), or to the hostname (if the use_dns()
parameter is set to yes and the IP address can be resolved to a hostname) of the host sending the
message to syslog-ng OSE. For details on using name resolution in syslog-ng OSE, see Section 17.4, Using
name resolution in syslog-ng (p. 271).

Note
If the log message does not contain a hostname in its HOST field, syslog-ng OSE automatically adds a hostname to the message.

■ For messages received from the network, this hostname is the address of the host that sent the message (this
means the address of the last hop if the message was transferred via a relay).

■ For messages received from the local host, syslog-ng OSE adds the name of the host.

This option can be specified globally, and per-source as well. The local setting of the source overrides the global
option if available.

Note
When relaying messages, enable this option on the syslog-ng OSE server and also on every relay, otherwise syslog-ng OSE
will treat incoming messages as if they were sent by the last relay.

keep_timestamp()
yes or noType:
yesDefault:

Description: Specifies whether syslog-ng should accept the timestamp received from the sending application or
client. If disabled, the time of reception will be used instead. This option can be specified globally, and per-source
as well. The local setting of the source overrides the global option if available.

log_fetch_limit()
numberType:
10Default:

Description: The maximum number of messages fetched from a source during a single poll loop. The destination
queues might fill up before flow-control could stop reading if log_fetch_limit() is too high.

86www.balabit.com

syslog() source options

log_iw_size()
numberType:
1000Default:

Description: The size of the initial window, this value is used during flow control. If the max-connections()
option is set, the log_iw_size() will be divided by the number of connections, otherwise log_iw_size() is
divided by 10 (the default value of the max-connections() option). The resulting number is the initial window
size of each connection.

Example 6.18. Initial window size of a connection
If log_iw_size(1000) and max-connections(10), then each connection will have an initial window size of 100.

log_msg_size()
numberType:
Use the global log_msg_size() option, which defaults to 8192.Default:

Description: Specifies the maximum length of incoming log messages. Uses the value of the global option if not
specified.

log_prefix() (DEPRECATED)
stringType:

Default:

Description: A string added to the beginning of every log message. It can be used to add an arbitrary string to any
log source, though it is most commonly used for adding kernel: to the kernel messages on Linux. NOTE: This
option is deprecated. Use program_override() instead.

max-connections()
numberType:
10Default:

Description: Specifies the maximum number of simultaneous connections.

pad_size()
numberType:
0Default:

Description: Specifies input padding. Some operating systems (such as HP-UX) pad all messages to block boundary.
This option can be used to specify the block size. (HP-UX uses 2048 bytes). The syslog-ng OSE application will
pad reads from the associated device to the number of bytes set in pad_size(). Mostly used on HP-UX where
/dev/log is a named pipe and every write is padded to 2048 bytes. If pad_size was given and the incoming

87www.balabit.com

syslog() source options

message does not fit into pad_size, syslog-ng will not read anymore from this pipe and displays the following
error message:

Padding was set, and couldn't read enough bytes

port() or localport()
numberType:
601Default:

Description: The port number to bind to.

program_override()
stringType:

Default:

Description: Replaces the ${PROGRAM} part of the message with the parameter string. For example, to mark
every message coming from the kernel, include the program_override("kernel") option in the source
containing /proc/kmsg. NOTE: This option replaces the deprecated log_prefix() option.

so_broadcast()
yes or noType:
noDefault:

Description: This option controls the SO_BROADCAST socket option required to make syslog-ng send messages
to a broadcast address. For details, see the socket(7) manual page.

so_keepalive()
yes or noType:
noDefault:

Description: Enables keep-alive messages, keeping the socket open. This only effects TCP and UNIX-stream
sockets. For details, see the socket(7) manual page.

so_rcvbuf()
numberType:
0Default:

Description: Specifies the size of the socket receive buffer in bytes. For details, see the socket(7) manual page.

Warning
When receiving messages using the UDP protocol, increase the size of the UDP receive buffer on the receiver host (that is,
the syslog-ng OSE server or relay receiving the messages). Note that on certain platforms, for example, on Red Hat Enterprise
Linux 5, even low message load (~200 messages per second) can result in message loss, unless the so_rcvbuf() option of
the source is increased. In such cases, you will need to increase the net.core.rmem_max parameter of the host (for example,
to 1024000), but do not modify net.core.rmem_default parameter.

88www.balabit.com

syslog() source options

As a general rule, increase the so_rcvbuf() so that the buffer size in kilobytes is higher than the rate of incoming messages
per second. For example, to receive 2000 messages per second, set the so_rcvbuf() at least to 2 097 152 bytes.

so_sndbuf()
numberType:
0Default:

Description:Specifies the size of the socket send buffer in bytes. For details, see the socket(7) manual page.

tags()
stringType:

Default:

Description: Label the messages received from the source with custom tags. Tags must be unique, and enclosed
between double quotes. When adding multiple tags, separate them with comma, for example tags("dmz",
"router"). This option is available only in syslog-ng 3.1 and later.

tcp-keep-alive()
yes or noType:
noDefault:

Description: This is an obsolete alias of the so_keepalive() option.

time_zone()
timezone in +/-HH:MM formatType:

Default:

Description: The default timezone for messages read from the source. Applies only if no timezone is specified
within the message itself.

transport()
udp, tcp, or tlsType:
tcpDefault:

Description: Specifies the protocol used to receive messages from the source.

Warning
When receiving messages using the UDP protocol, increase the size of the UDP receive buffer on the receiver host (that is,
the syslog-ng OSE server or relay receiving the messages). Note that on certain platforms, for example, on Red Hat Enterprise
Linux 5, even low message load (~200 messages per second) can result in message loss, unless the so_rcvbuf() option of
the source is increased. In such cases, you will need to increase the net.core.rmem_max parameter of the host (for example,
to 1024000), but do not modify net.core.rmem_default parameter.

As a general rule, increase the so_rcvbuf() so that the buffer size in kilobytes is higher than the rate of incoming messages
per second. For example, to receive 2000 messages per second, set the so_rcvbuf() at least to 2 097 152 bytes.

89www.balabit.com

syslog() source options

tls()
tls optionsType:
n/aDefault:

Description: This option sets various options related to TLS encryption, for example, key/certificate files and
trusted CA locations. TLS can be used only with tcp-based transport protocols. For details, see Section 10.4, TLS
options (p. 208).

use_dns()
yes, no, persist_onlyType:
yesDefault:

Description: Enable or disable DNS usage. The persist_only option attempts to resolve hostnames locally
from file (for example from /etc/hosts). The syslog-ng OSE application blocks on DNS queries, so enabling
DNS may lead to a Denial of Service attack. To prevent DoS, protect your syslog-ng network endpoint with firewall
rules, and make sure that all hosts which may get to syslog-ng are resolvable. This option can be specified globally,
and per-source as well. The local setting of the source overrides the global option if available.

use_fqdn()
yes or noType:
noDefault:

Description: Add Fully Qualified Domain Name instead of short hostname. This option can be specified globally,
and per-source as well. The local setting of the source overrides the global option if available.

6.10. Collecting the system-specific log messages of a platform

Starting with version 3.2, syslog-ng OSE can automatically collect the system-specific log messages of the host on
a number of platforms using the system() driver. If the system() driver is included in the syslog-ng OSE
configuration file, syslog-ng OSE automatically adds the following sources to the syslog-ng OSE configuration.

Note
syslog-ng OSE versions 3.2-3.3 used an external script to generate the system() source, but this was problematic in certain
situations, for example, when the host used a strict AppArmor profile. Therefore, the system() source is now generated
internally in syslog-ng OSE.

The system() driver is also used in the default configuration file of syslog-ng OSE. For details on the default
configuration file, see Example 4.1, The default configuration file of syslog-ng OSE (p. 39).

Warning
If syslog-ng OSE does not recognize the platform it is installed on, it does not add any sources.

90www.balabit.com

Collecting the system-specific log messages of a platform

Message sourcePlatform
unix-dgram("/dev/log");AIX and Tru64

unix-dgram("/var/run/log");FreeBSD

unix-dgram("/var/run/logpriv"
perm(0600));

file("/dev/klog" follow-freq(0)
program-override("kernel")
flags(no-parse));

For FreeBSD versions earlier than 9.1,
follow-freq(1) is used.

unix-dgram("/var/run/log");GNU/kFreeBSD

file("/dev/klog" follow-freq(0)
program-override("kernel"));

pipe("/dev/log" pad_size(2048));HP-UX

unix-dgram("/dev/log");Linux

file("/proc/kmsg"
program-override("kernel")
flags(kernel));

Note that on Linux, the so_rcvbuf option of the
system() source is automatically set to 8192.

If the host is running under systemd, syslog-ng OSE
reads the /run/systemd/journal/syslog socket
instead of /dev/log.

sun-streams("/dev/log");Solaris 8

sun-streams("/dev/log"
door("/etc/.syslog_door"));

Solaris 9

91www.balabit.com

Collecting the system-specific log messages of a platform

Message sourcePlatform
sun-streams("/dev/log"
door("/var/run/syslog_door"));

Solaris 10

Table 6.3. Sources automatically added by syslog-ng Open Source Edition

6.11. Collecting messages from remote hosts using the BSD syslog protocol

Note
The tcp(), tcp6(), udp(), and udp6() drivers will be deprecated in later versions, use the network() driver instead.

The tcp(), tcp6(), udp(), udp6() drivers can receive syslog messages conforming to RFC3164 from the
network using the TCP and UDP networking protocols. The tcp6() and udp6() drivers use the IPv6 network
protocol, while tcp() and udp() use IPv4.

UDP is a simple datagram oriented protocol, which provides "best effort service" to transfer messages between
hosts. It may lose messages, and no attempt is made at the protocol level to retransmit such lost messages. The
BSD-syslog protocol traditionally uses UDP.

TCP provides connection-oriented service, which basically means that the path of the messages is flow-controlled.
Along this path, each message is acknowledged, and retransmission is done for lost packets. Generally it is safer to
use TCP, because lost connections can be detected, and no messages get lost, assuming that the TCP connection
does not break. When a TCP connection is broken the 'in-transit' messages that were sent by syslog-ng but not yet
received on the other side are lost. (Basically these messages are still sitting in the socket buffer of the sending host
and syslog-ng has no information about the fate of these messages).

The tcp() and udp() drivers do not have any required parameters. By default they bind to the 0.0.0.0:514
address, which means that syslog-ng will listen on all available interfaces, port 514. To limit accepted connections
to only one interface, use the localip() parameter as described below. For the list of available optional parameters,
see Section 6.11.1, tcp(), tcp6(), udp() and udp6() source options (p. 93).

Declaration:
tcp([options]);
udp([options]);

Note
The tcp port 514 is reserved for use with rshell, so select a different port if syslog-ng and rshell is used at the same time.

If you specify a multicast bind address to udp() and udp6(), syslog-ng will automatically join the necessary
multicast group. TCP does not support multicasting.

92www.balabit.com

Collecting messages from remote hosts using the BSD syslog protocol

The syslog-ng application supports TLS (Transport Layer Security, also known as SSL) for the tcp() and tcp6()
drivers. For details, see the TLS-specific options below and Section 10.2, Encrypting log messages with TLS (p. 203). For
the list of available optional parameters, see Section 6.11.1, tcp(), tcp6(), udp() and udp6() source options (p. 93).

Tip
The syslog() driver also supports TLS-encrypted connections.

Example 6.19. Using the udp() and tcp() drivers
A simple udp() source with default settings.

source s_udp { udp(); };# An UDP source with default settings.

A TCP source listening on the localhost interface, with a limited number of connections allowed.

source s_tcp { tcp(ip(127.0.0.1) port(1999) max-connections(10)); };

A TCP source listening on a TLS-encrypted channel.

source s_tcp { tcp(ip(127.0.0.1) port(1999)
tls(peer-verify('required-trusted')

key_file('/opt/syslog-ng/etc/syslog-ng/syslog-ng.key')
cert_file('/opt/syslog-ng/etc/syslog-ng/syslog-ng.crt')));

};

A TCP source listening for messages using the IETF-syslog message format. Note that for transferring IETF-syslog messages,
generally you are recommended to use the syslog() driver on both the client and the server, as it uses both the IETF-syslog
message format and the protocol. For details, see Section 6.9, Collecting messages using the IETF syslog protocol (p. 82).

source s_tcp_syslog { tcp(ip(127.0.0.1) port(1999) flags(syslog-protocol)); };

6.11.1. tcp(), tcp6(), udp() and udp6() source options

The tcp(), tcp6(), udp(), udp6() drivers can receive messages conforming to RFC3164 from the network
using the TCP and UDP networking protocols.

The following options are valid for tcp(), tcp6(), udp(), and udp6() drivers:

Warning
When receiving messages using the UDP protocol, increase the size of the UDP receive buffer on the receiver host (that is,
the syslog-ng OSE server or relay receiving the messages). Note that on certain platforms, for example, on Red Hat Enterprise
Linux 5, even low message load (~200 messages per second) can result in message loss, unless the so_rcvbuf() option of
the source is increased. In such cases, you will need to increase the net.core.rmem_max parameter of the host (for example,
to 1024000), but do not modify net.core.rmem_default parameter.

As a general rule, increase the so_rcvbuf() so that the buffer size in kilobytes is higher than the rate of incoming messages
per second. For example, to receive 2000 messages per second, set the so_rcvbuf() at least to 2 097 152 bytes.

encoding()
stringType:

Default:

93www.balabit.com

tcp(), tcp6(), udp() and udp6() source options

Description: Specifies the characterset (encoding, for example UTF-8) of messages using the legacy BSD-syslog
protocol. To list the available character sets on a host, execute the iconv -l command.

flags()
empty-lines, expect-hostname, kernel, no-multi-line,
no-parse, store-legacy-msghdr, syslog-protocol,
validate-utf8

Type:

empty setDefault:

Description: Specifies the log parsing options of the source.

■ empty-lines: Use the empty-lines flag to keep the empty lines of the messages. By default, syslog-ng
OSE removes empty lines automatically.

■ expect-hostname: If the expect-hostname flag is enabled, syslog-ng OSE will assume that the log message
contains a hostname and parse the message accordingly. This is the default behavior for TCP sources.
Note that pipe sources use the no-hostname flag by default.

■ kernel: The kernel flag makes the source default to the LOG_KERN | LOG_NOTICE priority if not
specified otherwise.

■ no-hostname: Enable the no-hostname flag if the log message does not include the hostname of the
sender host. That way syslog-ng OSE assumes that the first part of the message header is ${PROGRAM}
instead of ${HOST}. For example:

source s_dell { udp(port(2000) flags(no-hostname)); };

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line. Note that this happens only if the underlying transport method actually
supports multi-line messages. Currently the syslog, udp, unix-dgram drivers support multi-line
messages; other drivers, for example, the tcp driver does not.

■ no-parse: By default, syslog-ng OSE parses incoming messages as syslog messages. The no-parse flag
completely disables syslog message parsing and processes the complete line as the message part of a
syslog message. The syslog-ng OSE application will generate a new syslog header (timestamp, host, and
so on) automatically and put the entire incoming message into the MSG part of the syslog message. This
flag is useful for parsing messages not complying to the syslog format.

■ dont-store-legacy-msghdr: By default, syslog-ng stores the original incoming header of the log message. This
is useful of the original format of a non-syslog-compliant message must be retained (syslog-ng
automatically corrects minor header errors, for example, adds a whitespace before msg in the following
message: Jan 22 10:06:11 host program:msg). If you do not want to store the original header
of the message, enable the dont-store-legacy-msghdr flag.

■ syslog-protocol: The syslog-protocol flag specifies that incoming messages are expected to be formatted
according to the new IETF syslog protocol standard (RFC5424), but without the frame header. Note
that this flag is not needed for the syslog driver, which handles only messages that have a frame header.

■ validate-utf8: The validate-utf8 flag enables encoding-verification for messages formatted according
to the new IETF syslog standard (for details, see Section 2.8.2, IETF-syslog messages (p. 12)). If the BOM

The byte order mark (BOM) is a Unicode character used to signal the byte-order of the message text.

94www.balabit.com

tcp(), tcp6(), udp() and udp6() source options

character is missing, but the message is otherwise UTF-8 compliant, syslog-ng automatically adds the
BOM character to the message.

■ threaded: The threaded flag enables multithreading for the destination. For details on multithreading,
see Chapter 15, Multithreading and scaling in syslog-ng OSE (p. 264).

Note
Only the tcp and tcp6 sources can use multiple threads.

host_override()
stringType:

Default:

Description: Replaces the ${HOST} part of the message with the parameter string.

username()

username()
stringType:
0.0.0.0Default:

Description: The IP address to bind to. Note that this is not the address where messages are accepted from.

keep-alive()
yes or noType:
yesDefault:

Description: Specifies whether connections to sources should be closed when syslog-ng is forced to reload its
configuration (upon the receipt of a SIGHUP signal). Note that this applies to the server (source) side of the
syslog-ng connections, client-side (destination) connections are always reopened after receiving a HUP signal unless
the keep-alive option is enabled for the destination.

keep_hostname()
yes or noType:
noDefault:

Description: Enable or disable hostname rewriting.

■ If enabled (keep_hostname(yes)), syslog-ng OSE assumes that the incoming log message was sent
by the host specified in the HOST field of the message.

95www.balabit.com

tcp(), tcp6(), udp() and udp6() source options

■ If disabled (keep_hostname(no)), syslog-ng OSE rewrites the HOST field of the message, either to
the IP address (if the use_dns() parameter is set to no), or to the hostname (if the use_dns()
parameter is set to yes and the IP address can be resolved to a hostname) of the host sending the
message to syslog-ng OSE. For details on using name resolution in syslog-ng OSE, see Section 17.4, Using
name resolution in syslog-ng (p. 271).

Note
If the log message does not contain a hostname in its HOST field, syslog-ng OSE automatically adds a hostname to the message.

■ For messages received from the network, this hostname is the address of the host that sent the message (this
means the address of the last hop if the message was transferred via a relay).

■ For messages received from the local host, syslog-ng OSE adds the name of the host.

This option can be specified globally, and per-source as well. The local setting of the source overrides the global
option if available.

Note
When relaying messages, enable this option on the syslog-ng OSE server and also on every relay, otherwise syslog-ng OSE
will treat incoming messages as if they were sent by the last relay.

keep_timestamp()
yes or noType:
yesDefault:

Description: Specifies whether syslog-ng should accept the timestamp received from the sending application or
client. If disabled, the time of reception will be used instead. This option can be specified globally, and per-source
as well. The local setting of the source overrides the global option if available.

log_fetch_limit()
numberType:
10Default:

Description: The maximum number of messages fetched from a source during a single poll loop. The destination
queues might fill up before flow-control could stop reading if log_fetch_limit() is too high.

log_iw_size()
numberType:
1000Default:

Description: The size of the initial window, this value is used during flow control. If the max-connections()
option is set, the log_iw_size() will be divided by the number of connections, otherwise log_iw_size() is
divided by 10 (the default value of the max-connections() option). The resulting number is the initial window
size of each connection.

96www.balabit.com

tcp(), tcp6(), udp() and udp6() source options

Example 6.20. Initial window size of a connection
If log_iw_size(1000) and max-connections(10), then each connection will have an initial window size of 100.

log_msg_size()
numberType:
Use the global log_msg_size() option, which defaults to 8192.Default:

Description: Specifies the maximum length of incoming log messages. Uses the value of the global option if not
specified.

log_prefix() (DEPRECATED)
stringType:

Default:

Description: A string added to the beginning of every log message. It can be used to add an arbitrary string to any
log source, though it is most commonly used for adding kernel: to the kernel messages on Linux. NOTE: This
option is deprecated. Use program_override() instead.

max-connections()
numberType:
10Default:

Description: Specifies the maximum number of simultaneous connections.

Note that the udp() and udp6() drivers do not support this option.

pad_size()
numberType:
0Default:

Description: Specifies input padding. Some operating systems (such as HP-UX) pad all messages to block boundary.
This option can be used to specify the block size. (HP-UX uses 2048 bytes). The syslog-ng OSE application will
pad reads from the associated device to the number of bytes set in pad_size(). Mostly used on HP-UX where
/dev/log is a named pipe and every write is padded to 2048 bytes. If pad_size was given and the incoming
message does not fit into pad_size, syslog-ng will not read anymore from this pipe and displays the following
error message:

Padding was set, and couldn't read enough bytes

port() or localport()
numberType:
514Default:

97www.balabit.com

tcp(), tcp6(), udp() and udp6() source options

Description: The port number to bind to.

program_override()
stringType:

Default:

Description: Replaces the ${PROGRAM} part of the message with the parameter string. For example, to mark
every message coming from the kernel, include the program_override("kernel") option in the source
containing /proc/kmsg. NOTE: This option replaces the deprecated log_prefix() option.

so_keepalive()
yes or noType:
noDefault:

Description: Enables keep-alive messages, keeping the socket open. This only effects TCP and UNIX-stream
sockets. For details, see the socket(7) manual page.

so_rcvbuf()
numberType:
0Default:

Description: Specifies the size of the socket receive buffer in bytes. For details, see the socket(7) manual page.

Warning
When receiving messages using the UDP protocol, increase the size of the UDP receive buffer on the receiver host (that is,
the syslog-ng OSE server or relay receiving the messages). Note that on certain platforms, for example, on Red Hat Enterprise
Linux 5, even low message load (~200 messages per second) can result in message loss, unless the so_rcvbuf() option of
the source is increased. In such cases, you will need to increase the net.core.rmem_max parameter of the host (for example,
to 1024000), but do not modify net.core.rmem_default parameter.

As a general rule, increase the so_rcvbuf() so that the buffer size in kilobytes is higher than the rate of incoming messages
per second. For example, to receive 2000 messages per second, set the so_rcvbuf() at least to 2 097 152 bytes.

tcp-keep-alive()
yes or noType:
noDefault:

Description: This is an obsolete alias of the so_keepalive() option.

tcp-keepalive-intvl()
number [seconds]Type:
0Default:

98www.balabit.com

tcp(), tcp6(), udp() and udp6() source options

Description: Specifies the interval (number of seconds) between subsequential keepalive probes, regardless of the
traffic exchanged in the connection. This option is equivalent to /proc/sys/net/ipv4/tcp_keepalive_intvl.
The default value is 0, which means using the kernel default.

Warning
The tcp-keepalive-time(), tcp-keepalive-probes(), and tcp-keepalive-intvl() options only work on
platforms which support the TCP_KEEPCNT, TCP_KEEPIDLE,and TCP_KEEPINTVL setsockopts. Currently, this is Linux.

A connection that has no traffic is closed after tcp-keepalive-time() + tcp-keepalive-intvl() *
tcp-keepalive-probes() seconds.

Available in syslog-ng OSE version 3.4 and later.

tcp-keepalive-probes()
numberType:
0Default:

Description: Specifies the number of unacknowledged probes to send before considering the connection dead.
This option is equivalent to /proc/sys/net/ipv4/tcp_keepalive_probes. The default value is 0, which
means using the kernel default.

Warning
The tcp-keepalive-time(), tcp-keepalive-probes(), and tcp-keepalive-intvl() options only work on
platforms which support the TCP_KEEPCNT, TCP_KEEPIDLE,and TCP_KEEPINTVL setsockopts. Currently, this is Linux.

A connection that has no traffic is closed after tcp-keepalive-time() + tcp-keepalive-intvl() *
tcp-keepalive-probes() seconds.

Available in syslog-ng OSE version 3.4 and later.

tcp-keepalive-time()
number [seconds]Type:
0Default:

Description: Specifies the interval (in seconds) between the last data packet sent and the first keepalive probe.
This option is equivalent to /proc/sys/net/ipv4/tcp_keepalive_time. The default value is 0, which
means using the kernel default.

Warning
The tcp-keepalive-time(), tcp-keepalive-probes(), and tcp-keepalive-intvl() options only work on
platforms which support the TCP_KEEPCNT, TCP_KEEPIDLE,and TCP_KEEPINTVL setsockopts. Currently, this is Linux.

A connection that has no traffic is closed after tcp-keepalive-time() + tcp-keepalive-intvl() *
tcp-keepalive-probes() seconds.

Available in syslog-ng OSE version 3.4 and later.

99www.balabit.com

tcp(), tcp6(), udp() and udp6() source options

tags()
stringType:

Default:

Description: Label the messages received from the source with custom tags. Tags must be unique, and enclosed
between double quotes. When adding multiple tags, separate them with comma, for example tags("dmz",
"router"). This option is available only in syslog-ng 3.1 and later.

time_zone()
timezone in +/-HH:MM formatType:

Default:

Description: The default timezone for messages read from the source. Applies only if no timezone is specified
within the message itself.

tls()
tls optionsType:
n/aDefault:

Description: This option sets various options related to TLS encryption, for example, key/certificate files and
trusted CA locations. TLS can be used only with tcp-based transport protocols. For details, see Section 10.4, TLS
options (p. 208).

use_dns()
yes, no, persist_onlyType:
yesDefault:

Description: Enable or disable DNS usage. The persist_only option attempts to resolve hostnames locally
from file (for example from /etc/hosts). The syslog-ng OSE application blocks on DNS queries, so enabling
DNS may lead to a Denial of Service attack. To prevent DoS, protect your syslog-ng network endpoint with firewall
rules, and make sure that all hosts which may get to syslog-ng are resolvable. This option can be specified globally,
and per-source as well. The local setting of the source overrides the global option if available.

use_fqdn()
yes or noType:
noDefault:

Description: Add Fully Qualified Domain Name instead of short hostname. This option can be specified globally,
and per-source as well. The local setting of the source overrides the global option if available.

6.12. Collecting messages from UNIX domain sockets

The unix-stream() and unix-dgram() drivers open an AF_UNIX socket and start listening on it for messages.
The unix-stream() driver is primarily used on Linux and uses SOCK_STREAM semantics (connection oriented,

100www.balabit.com

Collecting messages from UNIX domain sockets

no messages are lost); while unix-dgram() is used on BSDs and uses SOCK_DGRAM semantics: this may result
in lost local messages if the system is overloaded.

To avoid denial of service attacks when using connection-oriented protocols, the number of simultaneously accepted
connections should be limited. This can be achieved using the max-connections() parameter. The default value
of this parameter is quite strict, you might have to increase it on a busy system.

Both unix-stream and unix-dgram have a single required argument that specifies the filename of the socket to create.
For the list of available optional parameters, see Section 6.12.1, unix-stream() and unix-dgram() source options (p. 101)

Declaration:
unix-stream(filename [options]);
unix-dgram(filename [options]);

Note
syslogd on Linux originally used SOCK_STREAM sockets, but some distributions switched to SOCK_DGRAM around 1999
to fix a possible DoS problem. On Linux you can choose to use whichever driver you like as syslog clients automatically detect
the socket type being used.

Example 6.21. Using the unix-stream() and unix-dgram() drivers

source s_stream { unix-stream("/dev/log" max-connections(10)); };

source s_dgram { unix-dgram("/var/run/log"); };

6.12.1. unix-stream() and unix-dgram() source options

These two drivers behave similarly: they open an AF_UNIX socket and start listening on it for messages. The
following options can be specified for these divers:

encoding()
stringType:

Default:

Description: Specifies the characterset (encoding, for example UTF-8) of messages using the legacy BSD-syslog
protocol. To list the available character sets on a host, execute the iconv -l command.

flags()
empty-lines, expect-hostname, kernel, no-multi-line,
no-parse, store-legacy-msghdr, syslog-protocol,
validate-utf8

Type:

empty setDefault:

Description: Specifies the log parsing options of the source.

■ empty-lines: Use the empty-lines flag to keep the empty lines of the messages. By default, syslog-ng
OSE removes empty lines automatically.

101www.balabit.com

unix-stream() and unix-dgram() source options

■ expect-hostname: If the expect-hostname flag is enabled, syslog-ng OSE will assume that the log message
contains a hostname and parse the message accordingly. This is the default behavior for TCP sources.
Note that pipe sources use the no-hostname flag by default.

■ kernel: The kernel flag makes the source default to the LOG_KERN | LOG_NOTICE priority if not
specified otherwise.

■ no-hostname: Enable the no-hostname flag if the log message does not include the hostname of the
sender host. That way syslog-ng OSE assumes that the first part of the message header is ${PROGRAM}
instead of ${HOST}. For example:

source s_dell { udp(port(2000) flags(no-hostname)); };

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line. Note that this happens only if the underlying transport method actually
supports multi-line messages. Currently the syslog, udp, unix-dgram drivers support multi-line
messages; other drivers, for example, the tcp driver does not.

■ no-parse: By default, syslog-ng OSE parses incoming messages as syslog messages. The no-parse flag
completely disables syslog message parsing and processes the complete line as the message part of a
syslog message. The syslog-ng OSE application will generate a new syslog header (timestamp, host, and
so on) automatically and put the entire incoming message into the MSG part of the syslog message. This
flag is useful for parsing messages not complying to the syslog format.

■ dont-store-legacy-msghdr: By default, syslog-ng stores the original incoming header of the log message. This
is useful of the original format of a non-syslog-compliant message must be retained (syslog-ng
automatically corrects minor header errors, for example, adds a whitespace before msg in the following
message: Jan 22 10:06:11 host program:msg). If you do not want to store the original header
of the message, enable the dont-store-legacy-msghdr flag.

■ syslog-protocol: The syslog-protocol flag specifies that incoming messages are expected to be formatted
according to the new IETF syslog protocol standard (RFC5424), but without the frame header. Note
that this flag is not needed for the syslog driver, which handles only messages that have a frame header.

■ validate-utf8: The validate-utf8 flag enables encoding-verification for messages formatted according
to the new IETF syslog standard (for details, see Section 2.8.2, IETF-syslog messages (p. 12)). If the BOM
character is missing, but the message is otherwise UTF-8 compliant, syslog-ng automatically adds the
BOM character to the message.

group()
stringType:
rootDefault:

Description: Set the gid of the socket.

host_override()
stringType:

Default:

The byte order mark (BOM) is a Unicode character used to signal the byte-order of the message text.

102www.balabit.com

unix-stream() and unix-dgram() source options

Description: Replaces the ${HOST} part of the message with the parameter string.

keep-alive()
yes or noType:
yesDefault:

Description: Selects whether to keep connections open when syslog-ng is restarted; cannot be used with
unix-dgram().

keep_timestamp()
yes or noType:
yesDefault:

Description: Specifies whether syslog-ng should accept the timestamp received from the sending application or
client. If disabled, the time of reception will be used instead. This option can be specified globally, and per-source
as well. The local setting of the source overrides the global option if available.

log_fetch_limit()
numberType:
10Default:

Description: The maximum number of messages fetched from a source during a single poll loop. The destination
queues might fill up before flow-control could stop reading if log_fetch_limit() is too high.

log_iw_size()
numberType:
1000Default:

Description: The size of the initial window, this value is used during flow control. If the max-connections()
option is set, the log_iw_size() will be divided by the number of connections, otherwise log_iw_size() is
divided by 10 (the default value of the max-connections() option). The resulting number is the initial window
size of each connection.

Example 6.22. Initial window size of a connection
If log_iw_size(1000) and max-connections(10), then each connection will have an initial window size of 100.

log_msg_size()
numberType:
Use the global log_msg_size() option, which defaults to 8192.Default:

103www.balabit.com

unix-stream() and unix-dgram() source options

Description: Specifies the maximum length of incoming log messages. Uses the value of the global option if not
specified.

log_prefix() (DEPRECATED)
stringType:

Default:

Description: A string added to the beginning of every log message. It can be used to add an arbitrary string to any
log source, though it is most commonly used for adding kernel: to the kernel messages on Linux. NOTE: This
option is deprecated. Use program_override() instead.

max-connections()
numberType:
256Default:

Description: Limits the number of simultaneously open connections. Cannot be used with unix-dgram().

optional()
yes or noType:

Default:

Description: Instruct syslog-ng to ignore the error if a specific source cannot be initialized. No other attempts to
initialize the source will be made until the configuration is reloaded. This option currently applies to the pipe(),
unix-dgram, and unix-stream drivers.

owner()
stringType:
rootDefault:

Description: Set the uid of the socket.

pad_size()
numberType:
0Default:

Description: Specifies input padding. Some operating systems (such as HP-UX) pad all messages to block boundary.
This option can be used to specify the block size. (HP-UX uses 2048 bytes). The syslog-ng OSE application will
pad reads from the associated device to the number of bytes set in pad_size(). Mostly used on HP-UX where
/dev/log is a named pipe and every write is padded to 2048 bytes. If pad_size was given and the incoming
message does not fit into pad_size, syslog-ng will not read anymore from this pipe and displays the following
error message:

Padding was set, and couldn't read enough bytes

104www.balabit.com

unix-stream() and unix-dgram() source options

perm()
numberType:
0666Default:

Description: Set the permission mask. For octal numbers prefix the number with '0', for example: use 0755 for
rwxr-xr-x.

program_override()
stringType:

Default:

Description: Replaces the ${PROGRAM} part of the message with the parameter string. For example, to mark
every message coming from the kernel, include the program_override("kernel") option in the source
containing /proc/kmsg. NOTE: This option replaces the deprecated log_prefix() option.

so_keepalive()
yes or noType:
noDefault:

Description: Enables keep-alive messages, keeping the socket open. This only effects TCP and UNIX-stream
sockets. For details, see the socket(7) manual page.

so_rcvbuf()
numberType:
0Default:

Description: Specifies the size of the socket receive buffer in bytes. For details, see the socket(7) manual page.

Warning
When receiving messages using the UDP protocol, increase the size of the UDP receive buffer on the receiver host (that is,
the syslog-ng OSE server or relay receiving the messages). Note that on certain platforms, for example, on Red Hat Enterprise
Linux 5, even low message load (~200 messages per second) can result in message loss, unless the so_rcvbuf() option of
the source is increased. In such cases, you will need to increase the net.core.rmem_max parameter of the host (for example,
to 1024000), but do not modify net.core.rmem_default parameter.

As a general rule, increase the so_rcvbuf() so that the buffer size in kilobytes is higher than the rate of incoming messages
per second. For example, to receive 2000 messages per second, set the so_rcvbuf() at least to 2 097 152 bytes.

tags()
stringType:

Default:

Description: Label the messages received from the source with custom tags. Tags must be unique, and enclosed
between double quotes. When adding multiple tags, separate them with comma, for example tags("dmz",
"router"). This option is available only in syslog-ng 3.1 and later.

105www.balabit.com

unix-stream() and unix-dgram() source options

time_zone()
timezone in +/-HH:MM formatType:

Default:

Description: The default timezone for messages read from the source. Applies only if no timezone is specified
within the message itself.

106www.balabit.com

unix-stream() and unix-dgram() source options

Chapter 7. Sending and storing log messages —
destinations and destination drivers

A destination is where a log message is sent if the filtering rules match. Similarly to sources, destinations consist of
one or more drivers, each defining where and how messages are sent.

Tip
If no drivers are defined for a destination, all messages sent to the destination are discarded. This is equivalent to omitting
the destination from the log statement.

To define a destination, add a destination statement to the syslog-ng configuration file using the following syntax:

destination <identifier> {
destination-driver(params); destination-driver(params); ... };

Example 7.1. A simple destination statement
The following destination statement sends messages to the TCP port 1999 of the 10.1.2.3 host.

destination d_demo_tcp { tcp("10.1.2.3" port(1999)); };

If name resolution is configured, the hostname of the target server can be used as well.

destination d_tcp { tcp("target_host" port(1999); localport(999)); };

Note
Sources and destinations are initialized only when they are used in a log statement. For example, syslog-ng OSE connects a
remote destination only if the destination is used in a log statement. For details on creating log statements, see Chapter 8,
Routing messages: log paths and filters (p. 173).

The following table lists the destination drivers available in syslog-ng.

DescriptionName

Publishes messages using the AMQP (Advanced Message
Queuing Protocol).

amqp()

Writes messages to the specified file.file()

Writes messages to the specified named pipe.pipe()

Forks and launches the specified program, and sends
messages to its standard input.

program()

Sends e-mail messages to the specified recipients.smtp()

Sends messages into an SQL database. In addition to the
standard syslog-ng packages, the sql() destination

sql()

107www.balabit.com

DescriptionName

requires database-specific packages to be installed. Refer
to the section appropriate for your platform in Chapter 3,
Installing syslog-ng (p. 28).

Sends messages to the specified remote host using the
IETF-syslog protocol. The IETF standard supports message

syslog()

transport using the UDP, TCP, and TLS networking
protocols.

Sends messages to the specified TCP port of a remote
host using the BSD-syslog protocol over IPv4 and IPv6,
respectively.

tcp() and tcp6()

Sends messages to the specified UDP port of a remote
host using the BSD-syslog protocol over IPv4 and IPv6,
respectively.

udp() and udp6()

Sends messages to the specified unix socket in
SOCK_DGRAM style (BSD).

unix-dgram()

Sends messages to the specified unix socket in
SOCK_STREAM style (Linux).

unix-stream()

Sends messages to the terminal of the specified user, if
the user is logged in.

usertty()

Table 7.1. Destination drivers available in syslog-ng

7.1. Publishing messages using AMQP

The amqp() driver publishes messages using the AMQP (Advanced Message Queuing Protocol). syslog-ng OSE
supports AMQP versions 0.9.1 and 1.0. The syslog-ng OSE amqp() driver supports persistence, and every available
exchange types.

The name-value pairs selected with the value-pairs() option will be sent as AMQP headers, while body of the
AMQP message is empty by default (but you can add custom content using the body() option. Publishing the
name-value pairs as headers makes it possible to use the Headers exchange-type and subscribe only to interesting
log streams. This solution is more flexible than using the routing_key() option.

The amqp() driver has the following required parameters: username() and password(). For the list of available
optional parameters, see Section 7.1.1, amqp() destination options (p. 109).

Declaration:
amqp(host("<amqp-server-address>") username("<username>") password("<password>")
)

Example 7.2. Using the amqp() driver
The following example shows the default values of the available options, except for the username() and password()
options, which have no defaults.

destination d_amqp {
amqp(

vhost("/")
host("127.0.0.1")

108www.balabit.com

Publishing messages using AMQP

port(5672)
username("guest") # required option, no default
password("guest") # required option, no default
exchange("syslog")
exchange_type("header")
routing_key("")
body("")
persistent(yes)
value-pairs(

scope("selected-macros" "nv-pairs" "sdata")
)

);
};

7.1.1. amqp() destination options

The amqp() driver publishes messages using the AMQP (Advanced Message Queuing Protocol).

The amqp() destination has the following options:

body()
stringType:
empty stringDefault:

Description: The body of the AMQP message. You can also use macros and templates.

exchange()
stringType:
syslogDefault:

Description: The name of the AMQP exchange where syslog-ng OSE sends the message. Exchanges take a message
and route it into zero or more queues.

exchange-declare()
yes|noType:
noDefault:

Description: By default, syslog-ng OSE does not create non-existing exchanges. Use the
exchange-declare(yes) option to automatically create exchanges.

exchange-type()
direct|fanout|topic|headersType:
headerDefault:

Description: The type of the AMQP exchange.

109www.balabit.com

amqp() destination options

host()
hostname or IP addressType:
127.0.0.1Default:

Description: The hostname or IP address of the AMQP server.

password()
stringType:
n/aDefault:

Description: The password used to authenticate on the AMQP server.

persistent()
yes|noType:
yesDefault:

Description: If this option is enabled, the AMQP server or broker will store the messages on its hard disk. That
way, the messages will be retained if the AMQP server is restarted, if the message queue is set to be durable on the
AMQP server.

port()
numberType:
5672Default:

Description: The port number of the AMQP server.

routing-key()
stringType:
empty stringDefault:

Description: Specifies a routing key for the exchange. The routing key selects certain messages published to an
exchange to be routed to the bound queue. In other words, the routing key acts like a filter. The routing key can
include macros and templates.

username()
stringType:
empty stringDefault:

Description: The username used to authenticate on the AMQP server.

110www.balabit.com

amqp() destination options

value-pairs()
parameter list of the value-pairs() optionType:
scope("selected-macros" "nv-pairs")
exclude("R_*")
exclude("S_*")
exclude("HOST_FROM")
exclude("LEGACY_MSGHDR")
exclude("MSG")
exclude("SDATA")

Default:

Description: The value-pairs() option creates structured name-value pairs from the data and metadata of the
log message. For details on using value-pairs(), see Section 2.8.4, Structuring macros, metadata, and other
value-pairs (p. 16).

Note
Empty keys are not logged.

vhost()
stringType:
/Default:

Description: The name of the AMQP virtual host to send the messages to.

7.2. Storing messages in plain-text files

The file driver is one of the most important destination drivers in syslog-ng. It allows to output messages to the
specified text file, or to a set of files.

The destination filename may include macros which get expanded when the message is written, thus a simple
file() driver may create several files: for example, syslog-ng OSE can store the messages of client hosts in a
separate file for each host. For more information on available macros see Section 11.1.5, Macros of syslog-ng OSE (p. 214).

If the expanded filename refers to a directory which does not exist, it will be created depending on the
create_dirs() setting (both global and a per destination option).

The file() has a single required parameter that specifies the filename that stores the log messages. For the list
of available optional parameters, see Section 7.2.1, file() destination options (p. 112).

Declaration:
file(filename options());

Example 7.3. Using the file() driver

destination d_file { file("/var/log/messages"); };

111www.balabit.com

Storing messages in plain-text files

Example 7.4. Using the file() driver with macros in the file name and a template for the message

destination d_file {
file("/var/log/${YEAR}.${MONTH}.${DAY}/messages"

template("${HOUR}:${MIN}:${SEC} ${TZ} ${HOST} [${LEVEL}] ${MSG} ${MSG}\n")
template-escape(no));

};

Note
When using this destination, update the configuration of your log rotation program to rotate these files. Otherwise, the log
files can become very large.

Also, after rotating the log files, reload syslog-ng OSE using the syslog-ng-ctl reload command, or use another method
to send a SIGHUP to syslog-ng OSE.

Warning
Since the state of each created file must be tracked by syslog-ng, it consumes some memory for each file. If no new messages
are written to a file within 60 seconds (controlled by the time-reap() global option), it is closed, and its state is freed.

Exploiting this, a DoS attack can be mounted against the system. If the number of possible destination files and its needed
memory is more than the amount available on the syslog-ng server.

The most suspicious macro is ${PROGRAM}, where the number of possible variations is rather high. Do not use the
${PROGRAM} macro in insecure environments.

7.2.1. file() destination options

The file() driver outputs messages to the specified text file, or to a set of files. The file() destination has the
following options:

Warning
When creating several thousands separate log files, syslog-ng might not be able to open the required number of files. This
might happen for example when using the ${HOST} macro in the filename while receiving messages from a large number of
hosts. To overcome this problem, adjust the --fd-limit command-line parameter of syslog-ng or the global ulimit parameter
of your host. For setting the --fd-limit command-line parameter of syslog-ng see the syslog-ng(8) (p. 285) manual page. For
setting the ulimit parameter of the host, see the documentation of your operating system.

create_dirs()
yes or noType:
noDefault:

Description: Enable creating non-existing directories.

dir_group()
stringType:
Use the global settingsDefault:

Description: The group of the directories created by syslog-ng. To preserve the original properties of an existing
directory, use the option without specifying an attribute: dir_group().

112www.balabit.com

file() destination options

dir_owner()
stringType:
Use the global settingsDefault:

Description: The owner of the directories created by syslog-ng. To preserve the original properties of an existing
directory, use the option without specifying an attribute: dir_owner().

dir_perm()
numberType:
Use the global settingsDefault:

Description: The permission mask of directories created by syslog-ng. Log directories are only created if a file
after macro expansion refers to a non-existing directory, and directory creation is enabled (see also the
create_dirs() option). For octal numbers prefix the number with 0, for example use 0755 for rwxr-xr-x.

To preserve the original properties of an existing directory, use the option without specifying an attribute:
dir_perm(). Note that when creating a new directory without specifying attributes for dir_perm(), the default
permission of the directories is masked with the umask of the parent process (typically 0022).

flags()
no_multi_line, syslog-protocolType:
empty setDefault:

Description: Flags influence the behavior of the destination driver.

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line.

■ syslog-protocol: The syslog-protocol flag instructs the driver to format the messages according to the
new IETF syslog protocol standard (RFC5424), but without the frame header. If this flag is enabled,
macros used for the message have effect only for the text of the message, the message header is formatted
to the new standard. Note that this flag is not needed for the syslog driver, and that the syslog driver
automatically adds the frame header to the messages.

■ threaded: The threaded flag enables multithreading for the destination. For details on multithreading,
see Chapter 15, Multithreading and scaling in syslog-ng OSE (p. 264).

Note
The file destination uses multiple threads only if the destination filename contains macros.

flush_lines()
numberType:
Use global setting.Default:

113www.balabit.com

file() destination options

Description: Specifies how many lines are sent to a destination at a time. The syslog-ng OSE application waits for
this number of lines to accumulate and sends them off in a single batch. Setting this number high increases throughput
as fully filled frames are sent to the destination, but also increases message latency. The latency can be limited by
the use of the flush-timeout option.

flush_timeout() (DEPRECATED)
time in millisecondsType:
Use global setting.Default:

Description: This is a deprecated option. Specifies the time syslog-ng waits for lines to accumulate in its output
buffer. For details, see the flush_lines option.

frac_digits()
numberType:
Value of the global option (which defaults to 0)Default:

Description: The syslog-ng application can store fractions of a second in the timestamps according to the ISO8601
format. The frac_digits() parameter specifies the number of digits stored. The digits storing the fractions are
padded by zeros if the original timestamp of the message specifies only seconds. Fractions can always be stored
for the time the message was received. Note that syslog-ng can add the fractions to non-ISO8601 timestamps as
well.

fsync()
yes or noType:
noDefault:

Description: Forces an fsync() call on the destination fd after each write. Note: enabling this option may seriously
degrade performance.

group()
stringType:
Use the global settingsDefault:

Description: Set the group of the created file to the one specified. To preserve the original properties of an existing
file, use the option without specifying an attribute: group().

local_time_zone()
name of the timezone or the timezone offsetType:
The local timezone.Default:

Description: Sets the timezone used when expanding filename and tablename templates. The timezone can be
specified as using the name of the (for example time_zone("Europe/Budapest")), or as the timezone offset
(for example +01:00). The valid timezone names are listed under the /usr/share/zoneinfo directory.

114www.balabit.com

file() destination options

log_fifo_size()
numberType:
Use global setting.Default:

Description: The number of messages that the output queue can store.

mark_mode()
internal | dst-idle | host-idle | periodical | none | globalAccepted values:
internal for pipe, program drivers

none for file, unix-dgram, unix-stream drivers

global for syslog, tcp, udp destinations

host-idle for global option

Default:

Description:The mark-mode() option can be set for the following destination drivers: file(), program(),
unix_dgram(), unix_stream(), udp(), udp6(), tcp(), tcp6(), pipe(), syslog() and in global option.

■ internal: When internal mark mode is selected, internal source should be placed in the log path as
this mode does not generate mark by itself at the destination. This mode only yelds the mark messages
from internal source. This is the mode as syslog-ng OSE 3.3 worked. MARK will be generated by internal
source if there was NO traffic on local sources:
file(), pipe(), unix-stream(), unix-dgram(), program()

■ dst-idle: Sends mark signal if there was NO traffic on destination drivers. Mark signal from internal
source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ host-idle: Sends mark signal if there was NO local message on destination drivers. For example
mark is generated even if messages were received from tcp. Mark signal from internal source will be
dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ periodical: Sends mark signal perodically, regardless of traffic on destination driver. Mark signal
from internal source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ none: Destination driver drops all MARK messages. If an explicit mark-mode() is not given to the drivers
where none is the default value, then none will be used.

■ global: Destination driver uses the global mark-mode setting. The syslog-ng interprets syntax error
if the global mark-mode is global.

115www.balabit.com

file() destination options

Note
In case of dst-idle, host-idle and periodical; MARK message will not be written in the destination, if it is not open
yet.

Available in syslog-ng OSE 3.4 and later.

overwrite_if_older()
numberType:
0Default:

Description: If set to a value higher than 0, syslog-ng checks when the file was last modified before starting to
write into the file. If the file is older than the specified amount of time (in seconds), then syslog-ng removes the
existing file and opens a new file with the same name. In combination with for example the ${WEEKDAY} macro,
this can be used for simple log rotation, in case not all history has to be kept. (Note that in this weekly log rotation
example if its Monday 00:01, then the file from last Monday is not seven days old, because it was probably last
modified shortly before 23:59 last Monday, so it is actually not even six days old. So in this case, set the
overwrite_if_older() parameter to a-bit-less-than-six-days, for example, to 518000 seconds.

owner()
stringType:
Use the global settingsDefault:

Description: Set the owner of the created file to the one specified. To preserve the original properties of an existing
file, use the option without specifying an attribute: owner().

pad_size()
numberType:
0Default:

Description: If set, syslog-ng OSE will pad output messages to the specified size (in bytes). Some operating systems
(such as HP-UX) pad all messages to block boundary. This option can be used to specify the block size. (HP-UX
uses 2048 bytes).

Warning
Hazard of data loss! If the size of the incoming message is larger than the previously set pad_size value, syslog-ng will truncate
the message to the specified size. Therefore, all message content above that size will be lost.

perm()
numberType:
Use the global settingsDefault:

116www.balabit.com

file() destination options

Description: The permission mask of the file if it is created by syslog-ng. For octal numbers prefix the number
with 0, for example use 0755 for rwxr-xr-x.

To preserve the original properties of an existing file, use the option without specifying an attribute: perm().

suppress()
secondsType:
0 (disabled)Default:

Description: If several identical log messages would be sent to the destination without any other messages between
the identical messages (for example, an application repeated an error message ten times), syslog-ng can suppress
the repeated messages and send the message only once, followed by the Last message repeated n times.
message. The parameter of this option specifies the number of seconds syslog-ng waits for identical messages.

template()
stringType:
A format conforming to the default logfile format.Default:

Description: Specifies a template defining the logformat to be used in the destination. Macros are described in
Section 11.1.5, Macros of syslog-ng OSE (p. 214). Please note that for network destinations it might not be appropriate
to change the template as it changes the on-wire format of the syslog protocol which might not be tolerated by
stock syslog receivers (like syslogd or syslog-ng itself). For network destinations make sure the receiver can cope
with the custom format defined.

template_escape()
yes or noType:
noDefault:

Description: Turns on escaping for the ', ", and backspace characters in templated output files. This is useful for
generating SQL statements and quoting string contents so that parts of the log message are not interpreted as
commands to the SQL server.

throttle()
numberType:
0Default:

Description: Sets the maximum number of messages sent to the destination per second. Use this output-rate-limiting
functionality only when using large enough buffers as well to avoid the risk of losing messages. Specifying 0 or a
lower value sets the output limit to unlimited.

time_zone()
timezone in +/-HH:MM formatType:
unspecifiedDefault:

117www.balabit.com

file() destination options

Description: Convert timestamps to the timezone specified by this option. If this option is not set then the original
timezone information in the message is used.

time_reap()
numberAccepted values:
Use global settingsDefault:

Description: The time to wait in seconds before an idle destination file is closed. Note that only destination files
having macros in their filenames are closed automatically.

ts_format()
rfc3164, bsd, rfc3339, isoType:
Use the global option (which defaults to rfc3164)Default:

Description: Override the global timestamp format (set in the global ts_format() parameter) for the specific
destination. For details, see Section ts_format() (p. 200).

7.3. Storing messages in a MongoDB database

The mongodb() driver sends messages to a MongoDB database. MongoDB is a schema-free, document-oriented
database. For the list of available optional parameters, see Section 7.3.1, mongodb() destination options (p. 119).

Declaration:
mongodb(parameters);

The mongodb() driver does not support creating indexes, as that can be a very complex operation in MongoDB.
If needed, the administrator of the MongoDB database must ensure that indexes are created on the collections.

Example 7.5. Using the mongodb() driver
The following example creates a mongodb() destination using only default values.

destination d_mongodb {
mongodb();

};

The following example displays the default values, and is equivalent with the previous example.

destination d_mongodb {
mongodb(

servers("localhost:27017")
database("syslog")
collection("messages")
value-pairs(

scope("selected-macros" "nv-pairs")
exclude("R_*")
exclude("S_*")
exclude("HOST_FROM")
exclude("LEGACY_MSGHDR")
exclude("MSG")
exclude("SDATA")

)
);

};

118www.balabit.com

Storing messages in a MongoDB database

7.3.1. mongodb() destination options

The mongodb() driver sends messages to a MongoDB database. MongoDB is a schema-free, document-oriented
database.

The mongodb() destination has the following options:

collection()
stringType:
messagesDefault:

Description: The name of the MongoDB collection where the log messages are stored (collections are similar to
SQL tables). Note that the name of the collection must not start with a dollar sign ($), and that it may contain dot
(.) characters.

Warning
Hazard of data loss! The syslog-ng OSE application does not verify that the specified collection name does not contain invalid
characters. If you specify a collection with an invalid name, the log messages sent to the MongoDB database will be irrevocably
lost without any warning.

database()
stringType:
syslogDefault:

Description: The name of the MongoDB database where the log messages are stored. Note that the name of the
database must not start with a dollar sign ($) and it cannot contain dot (.) characters.

Warning
Hazard of data loss! The syslog-ng OSE application does not verify that the specified database name does not contain invalid
characters. If you specify a database with an invalid name, the log messages sent to the MongoDB database will be irrevocably
lost without any warning.

frac_digits()
numberType:
Value of the global option (which defaults to 0)Default:

Description: The syslog-ng application can store fractions of a second in the timestamps according to the ISO8601
format. The frac_digits() parameter specifies the number of digits stored. The digits storing the fractions are
padded by zeros if the original timestamp of the message specifies only seconds. Fractions can always be stored
for the time the message was received. Note that syslog-ng can add the fractions to non-ISO8601 timestamps as
well.

119www.balabit.com

mongodb() destination options

host() (DEPRECATED)
hostname or IP addressType:
localhostDefault:

OBSOLETE: use the servers() option instead.

Description: Hostname or IP address of the database server. When specifying an IP address, IPv4 (for example,
192.168.0.1) or IPv6 (for example, [::1]) can be used as well.

Note
If you specify host="localhost" (or use the default), syslog-ng OSE will use a socket to connect to the local database
server. Use host="127.0.0.1" to force TCP communication between syslog-ng OSE and the local database server.

log_fifo_size()
numberType:
Use global setting.Default:

Description: The number of messages that the output queue can store.

port() (DEPRECATED)
numberType:
27017Default:

OBSOLETE: use the servers() option instead.

Description: The port number to connect to.

path()
stringType:
emptyDefault:

Description: If the path() option is set, syslog-ng OSE will connect to the database using specified socket. Note
that you cannot set the path() and the servers() options at the same time.

safe-mode()
yes or noType:
noDefault:

Description: If safe-mode() is enabled, syslog-ng OSE performs an extra check after each insert to verify that
the insert succeeded. The insert is successful only if this second check is successful. Note that enabling this option
reduces the performance of the driver.

120www.balabit.com

mongodb() destination options

servers()
list of hostname:port pairsType:
127.0.0.1:27017Default:

Description: Specifies the hostname or IP address and the port number of the database server. When specifying
an IP address, IPv4 (for example, 192.168.0.1) or IPv6 (for example, [::1]) can be used as well.

To send the messages to a MongoDB replicaset, specify the addresses of the database servers as a comma-separated
list, for example: servers(192.168.1.1:27017,192.168.3.3:27017)

Note
If you specify servers("localhost") (or use the default), syslog-ng OSE will use a socket to connect to the local database
server. Use servers("127.0.0.1") to force TCP communication between syslog-ng OSE and the local database server.

time_zone()
timezone in +/-HH:MM formatType:
unspecifiedDefault:

Description: Convert timestamps to the timezone specified by this option. If this option is not set then the original
timezone information in the message is used.

value-pairs()
parameter list of the value-pairs() optionType:
scope("selected-macros" "nv-pairs")
exclude("R_*")
exclude("S_*")
exclude("HOST_FROM")
exclude("LEGACY_MSGHDR")
exclude("MSG")
exclude("SDATA")

Default:

Description: The value-pairs() option creates structured name-value pairs from the data and metadata of the
log message. For details on using value-pairs(), see Section 2.8.4, Structuring macros, metadata, and other
value-pairs (p. 16).

Note
Empty keys are not logged.

7.4. Sending messages to a remote logserver using the RFC3164 protocol

The network() destination driver can send syslog messages conforming to RFC3164 from the network using the
TCP, TLS, and UDP networking protocols.

121www.balabit.com

Sending messages to a remote logserver using the RFC3164 protocol

Example 7.6. Using the network() driver
TCP source listening on the localhost on port 2222 without using the network() driver.

destination d_tcp6 {
tcp6(

ip("::1")
port(2222)

);
};

TCP source listening on the localhost on port 2222 using the network() driver.

destination d_network6 {
network(

ip("::1")
port(2222)
transport(tcp)
ip-protocol(6)

);
};

Note
For details on the tcp(), tcp6(), udp(), udp6() drivers, see Section 7.10, Sending messages to a remote logserver using the legacy
BSD-syslog protocol (p. 160).

7.4.1. network() destination options

The network() driver sends messages to a remote host (for example a syslog-ng server or relay) on the local
intranet or internet using the RFC3164 syslog protocol (for details about the protocol, see Section 2.8.1, BSD-syslog
or legacy-syslog messages (p. 10)). The network() driver supports sending messages using the UDP, TCP, or the
encrypted TLS networking protocols.

These destinations have the following options:

flags()
no_multi_line, syslog-protocolType:
empty setDefault:

Description: Flags influence the behavior of the destination driver.

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line.

■ syslog-protocol: The syslog-protocol flag instructs the driver to format the messages according to the
new IETF syslog protocol standard (RFC5424), but without the frame header. If this flag is enabled,
macros used for the message have effect only for the text of the message, the message header is formatted
to the new standard. Note that this flag is not needed for the syslog driver, and that the syslog driver
automatically adds the frame header to the messages.

flush_lines()
numberType:
Use global setting.Default:

122www.balabit.com

network() destination options

Description: Specifies how many lines are sent to a destination at a time. The syslog-ng OSE application waits for
this number of lines to accumulate and sends them off in a single batch. Setting this number high increases throughput
as fully filled frames are sent to the destination, but also increases message latency. The latency can be limited by
the use of the flush-timeout option.

flush_timeout() (DEPRECATED)
time in millisecondsType:
Use global setting.Default:

Description: This is a deprecated option. Specifies the time syslog-ng waits for lines to accumulate in its output
buffer. For details, see the flush_lines option.

frac_digits()
numberType:
Value of the global option (which defaults to 0)Default:

Description: The syslog-ng application can store fractions of a second in the timestamps according to the ISO8601
format. The frac_digits() parameter specifies the number of digits stored. The digits storing the fractions are
padded by zeros if the original timestamp of the message specifies only seconds. Fractions can always be stored
for the time the message was received. Note that syslog-ng can add the fractions to non-ISO8601 timestamps as
well.

ip_tos()
numberType:
0Default:

Description: Specifies the Type-of-Service value of outgoing packets.

ip_ttl()
numberType:
0Default:

Description: Specifies the Time-To-Live value of outgoing packets.

keep-alive()
yes or noType:
yesDefault:

Description: Specifies whether connections to destinations should be closed when syslog-ng is reloaded. Note
that this applies to the client (destination) side of the syslog-ng connections, server-side (source) connections are
always reopened after receiving a HUP signal unless the keep-alive option is enabled for the source.

123www.balabit.com

network() destination options

localip()
stringType:
0.0.0.0Default:

Description: The IP address to bind to before connecting to target.

localport()
numberType:
0Default:

Description: The port number to bind to. Messages are sent from this port.

log_fifo_size()
numberType:
Use global setting.Default:

Description: The number of messages that the output queue can store.

mark_freq()
numberAccepted values:
1200Default:

Description: An alias for the obsolete mark() option, retained for compatibility with syslog-ng version 1.6.x. The
number of seconds between two MARK messages. MARK messages are generated when there was no message traffic
to inform the receiver that the connection is still alive. If set to zero (0), no MARKmessages are sent. The mark-freq
can be set for global option and/or every MARK capable destination driver if mark-mode is periodical or dst-idle
or host-idle. If mark-freq is not defined in the destination, then the mark-freq will be inherited from the global
options. If the destination uses internal mark-mode, then the global mark-freq will be valid (does not matter
what mark-freq set in the destination side).

mark_mode()
internal | dst-idle | host-idle | periodical | none | globalAccepted values:
internal for pipe, program drivers

none for file, unix-dgram, unix-stream drivers

global for syslog, tcp, udp destinations

host-idle for global option

Default:

Description:The mark-mode() option can be set for the following destination drivers: file(), program(),
unix_dgram(), unix_stream(), udp(), udp6(), tcp(), tcp6(), pipe(), syslog() and in global option.

124www.balabit.com

network() destination options

■ internal: When internal mark mode is selected, internal source should be placed in the log path as
this mode does not generate mark by itself at the destination. This mode only yelds the mark messages
from internal source. This is the mode as syslog-ng OSE 3.3 worked. MARK will be generated by internal
source if there was NO traffic on local sources:
file(), pipe(), unix-stream(), unix-dgram(), program()

■ dst-idle: Sends mark signal if there was NO traffic on destination drivers. Mark signal from internal
source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ host-idle: Sends mark signal if there was NO local message on destination drivers. For example
mark is generated even if messages were received from tcp. Mark signal from internal source will be
dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ periodical: Sends mark signal perodically, regardless of traffic on destination driver. Mark signal
from internal source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ none: Destination driver drops all MARK messages. If an explicit mark-mode() is not given to the drivers
where none is the default value, then none will be used.

■ global: Destination driver uses the global mark-mode setting. The syslog-ng interprets syntax error
if the global mark-mode is global.

Note
In case of dst-idle, host-idle and periodical; MARK message will not be written in the destination, if it is not open
yet.

Available in syslog-ng OSE 3.4 and later.

port() or destport()
numberType:
601Default:

Description: The port number to connect to. Note that the default port numbers used by syslog-ng do not comply
with the latest RFC which was published after the release of syslog-ng 3.0.2, therefore the default port numbers
will change in the future releases.

so_broadcast()
yes or noType:
noDefault:

125www.balabit.com

network() destination options

Description: This option controls the SO_BROADCAST socket option required to make syslog-ng send messages
to a broadcast address. For details, see the socket(7) manual page.

so_keepalive()
yes or noType:
noDefault:

Description: Enables keep-alive messages, keeping the socket open. This only effects TCP and UNIX-stream
sockets. For details, see the socket(7) manual page.

so_rcvbuf()
numberType:
0Default:

Description: Specifies the size of the socket receive buffer in bytes. For details, see the socket(7) manual page.

so_sndbuf()
numberType:
0Default:

Description:Specifies the size of the socket send buffer in bytes. For details, see the socket(7) manual page.

spoof_source()
yes or noType:
noDefault:

Description: Enables source address spoofing. This means that the host running syslog-ng generates UDP packets
with the source IP address matching the original sender of the message. It is useful when you want to perform
some kind of preprocessing via syslog-ng then forward messages to your central log management solution with the
source address of the original sender. This option only works for UDP destinations though the original message
can be received by TCP as well. This option is only available if syslog-ng was compiled using the
--enable-spoof-source configuration option.

suppress()
secondsType:
0 (disabled)Default:

Description: If several identical log messages would be sent to the destination without any other messages between
the identical messages (for example, an application repeated an error message ten times), syslog-ng can suppress
the repeated messages and send the message only once, followed by the Last message repeated n times.
message. The parameter of this option specifies the number of seconds syslog-ng waits for identical messages.

126www.balabit.com

network() destination options

tcp-keepalive-intvl()
number [seconds]Type:
0Default:

Description: Specifies the interval (number of seconds) between subsequential keepalive probes, regardless of the
traffic exchanged in the connection. This option is equivalent to /proc/sys/net/ipv4/tcp_keepalive_intvl.
The default value is 0, which means using the kernel default.

Warning
The tcp-keepalive-time(), tcp-keepalive-probes(), and tcp-keepalive-intvl() options only work on
platforms which support the TCP_KEEPCNT, TCP_KEEPIDLE,and TCP_KEEPINTVL setsockopts. Currently, this is Linux.

A connection that has no traffic is closed after tcp-keepalive-time() + tcp-keepalive-intvl() *
tcp-keepalive-probes() seconds.

Available in syslog-ng OSE version 3.4 and later.

tcp-keepalive-probes()
numberType:
0Default:

Description: Specifies the number of unacknowledged probes to send before considering the connection dead.
This option is equivalent to /proc/sys/net/ipv4/tcp_keepalive_probes. The default value is 0, which
means using the kernel default.

Warning
The tcp-keepalive-time(), tcp-keepalive-probes(), and tcp-keepalive-intvl() options only work on
platforms which support the TCP_KEEPCNT, TCP_KEEPIDLE,and TCP_KEEPINTVL setsockopts. Currently, this is Linux.

A connection that has no traffic is closed after tcp-keepalive-time() + tcp-keepalive-intvl() *
tcp-keepalive-probes() seconds.

Available in syslog-ng OSE version 3.4 and later.

tcp-keepalive-time()
number [seconds]Type:
0Default:

Description: Specifies the interval (in seconds) between the last data packet sent and the first keepalive probe.
This option is equivalent to /proc/sys/net/ipv4/tcp_keepalive_time. The default value is 0, which
means using the kernel default.

127www.balabit.com

network() destination options

Warning
The tcp-keepalive-time(), tcp-keepalive-probes(), and tcp-keepalive-intvl() options only work on
platforms which support the TCP_KEEPCNT, TCP_KEEPIDLE,and TCP_KEEPINTVL setsockopts. Currently, this is Linux.

A connection that has no traffic is closed after tcp-keepalive-time() + tcp-keepalive-intvl() *
tcp-keepalive-probes() seconds.

Available in syslog-ng OSE version 3.4 and later.

template()
stringType:
A format conforming to the default logfile format.Default:

Description: Specifies a template defining the logformat to be used in the destination. Macros are described in
Section 11.1.5, Macros of syslog-ng OSE (p. 214). Please note that for network destinations it might not be appropriate
to change the template as it changes the on-wire format of the syslog protocol which might not be tolerated by
stock syslog receivers (like syslogd or syslog-ng itself). For network destinations make sure the receiver can cope
with the custom format defined.

template_escape()
yes or noType:
noDefault:

Description: Turns on escaping for the ', ", and backspace characters in templated output files. This is useful for
generating SQL statements and quoting string contents so that parts of the log message are not interpreted as
commands to the SQL server.

throttle()
numberType:
0Default:

Description: Sets the maximum number of messages sent to the destination per second. Use this output-rate-limiting
functionality only when using large enough buffers as well to avoid the risk of losing messages. Specifying 0 or a
lower value sets the output limit to unlimited.

time_zone()
timezone in +/-HH:MM formatType:
unspecifiedDefault:

Description: Convert timestamps to the timezone specified by this option. If this option is not set then the original
timezone information in the message is used.

128www.balabit.com

network() destination options

tls()
tls optionsType:
n/aDefault:

Description: This option sets various options related to TLS encryption, for example, key/certificate files and
trusted CA locations. TLS can be used only with tcp-based transport protocols. For details, see Section 10.4, TLS
options (p. 208).

transport()
udp, tcp, or tlsType:
tcpDefault:

Description: Specifies the protocol used to send messages to the destination server.

ts_format()
rfc3164, bsd, rfc3339, isoType:
Use the global option (which defaults to rfc3164)Default:

Description: Override the global timestamp format (set in the global ts_format() parameter) for the specific
destination. For details, see Section ts_format() (p. 200).

7.5. Sending messages to named pipes

The pipe() driver sends messages to a named pipe like /dev/xconsole.

The pipe driver has a single required parameter, specifying the filename of the pipe to open. The filename can
include macros. For the list of available optional parameters, see Section 7.5.1, pipe() destination options (p. 129).

Declaration:
pipe(filename);

Warning
Starting with syslog-ng OSE 3.0.2, pipes are created automatically. In earlier versions, you had to create the pipe using the
mkfifo(1) command.

Example 7.7. Using the pipe() driver

destination d_pipe { pipe("/dev/xconsole"); };

7.5.1. pipe() destination options

This driver sends messages to a named pipe like /dev/xconsole.

129www.balabit.com

Sending messages to named pipes

The pipe() destination has the following options:

flags()
no_multi_line, syslog-protocolType:
empty setDefault:

Description: Flags influence the behavior of the destination driver.

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line.

■ syslog-protocol: The syslog-protocol flag instructs the driver to format the messages according to the
new IETF syslog protocol standard (RFC5424), but without the frame header. If this flag is enabled,
macros used for the message have effect only for the text of the message, the message header is formatted
to the new standard. Note that this flag is not needed for the syslog driver, and that the syslog driver
automatically adds the frame header to the messages.

flush_lines()
numberType:
Use global setting.Default:

Description: Specifies how many lines are sent to a destination at a time. The syslog-ng OSE application waits for
this number of lines to accumulate and sends them off in a single batch. Setting this number high increases throughput
as fully filled frames are sent to the destination, but also increases message latency. The latency can be limited by
the use of the flush-timeout option.

flush_timeout() (DEPRECATED)
time in millisecondsType:
Use global setting.Default:

Description: This is a deprecated option. Specifies the time syslog-ng waits for lines to accumulate in its output
buffer. For details, see the flush_lines option.

frac_digits()
numberType:
Value of the global option (which defaults to 0)Default:

Description: The syslog-ng application can store fractions of a second in the timestamps according to the ISO8601
format. The frac_digits() parameter specifies the number of digits stored. The digits storing the fractions are
padded by zeros if the original timestamp of the message specifies only seconds. Fractions can always be stored
for the time the message was received. Note that syslog-ng can add the fractions to non-ISO8601 timestamps as
well.

130www.balabit.com

pipe() destination options

group()
stringType:
Use the global settingsDefault:

Description: Set the group of the created file to the one specified. To preserve the original properties of an existing
file, use the option without specifying an attribute: group().

log_fifo_size()
numberType:
Use global setting.Default:

Description: The number of messages that the output queue can store.

mark_mode()
internal | dst-idle | host-idle | periodical | none | globalAccepted values:
internal for pipe, program drivers

none for file, unix-dgram, unix-stream drivers

global for syslog, tcp, udp destinations

host-idle for global option

Default:

Description:The mark-mode() option can be set for the following destination drivers: file(), program(),
unix_dgram(), unix_stream(), udp(), udp6(), tcp(), tcp6(), pipe(), syslog() and in global option.

■ internal: When internal mark mode is selected, internal source should be placed in the log path as
this mode does not generate mark by itself at the destination. This mode only yelds the mark messages
from internal source. This is the mode as syslog-ng OSE 3.3 worked. MARK will be generated by internal
source if there was NO traffic on local sources:
file(), pipe(), unix-stream(), unix-dgram(), program()

■ dst-idle: Sends mark signal if there was NO traffic on destination drivers. Mark signal from internal
source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ host-idle: Sends mark signal if there was NO local message on destination drivers. For example
mark is generated even if messages were received from tcp. Mark signal from internal source will be
dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ periodical: Sends mark signal perodically, regardless of traffic on destination driver. Mark signal
from internal source will be dropped.

131www.balabit.com

pipe() destination options

MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ none: Destination driver drops all MARK messages. If an explicit mark-mode() is not given to the drivers
where none is the default value, then none will be used.

■ global: Destination driver uses the global mark-mode setting. The syslog-ng interprets syntax error
if the global mark-mode is global.

Note
In case of dst-idle, host-idle and periodical; MARK message will not be written in the destination, if it is not open
yet.

Available in syslog-ng OSE 3.4 and later.

owner()
stringType:
Use the global settingsDefault:

Description: Set the owner of the created file to the one specified. To preserve the original properties of an existing
file, use the option without specifying an attribute: owner().

pad_size()
numberType:
0Default:

Description: If set, syslog-ng OSE will pad output messages to the specified size (in bytes). Some operating systems
(such as HP-UX) pad all messages to block boundary. This option can be used to specify the block size. (HP-UX
uses 2048 bytes).

Warning
Hazard of data loss! If the size of the incoming message is larger than the previously set pad_size value, syslog-ng will truncate
the message to the specified size. Therefore, all message content above that size will be lost.

perm()
numberType:
0600Default:

Description:The permission mask of the pipe. For octal numbers prefix the number with '0', for example: use
0755 for rwxr-xr-x.

132www.balabit.com

pipe() destination options

suppress()
secondsType:
0 (disabled)Default:

Description: If several identical log messages would be sent to the destination without any other messages between
the identical messages (for example, an application repeated an error message ten times), syslog-ng can suppress
the repeated messages and send the message only once, followed by the Last message repeated n times.
message. The parameter of this option specifies the number of seconds syslog-ng waits for identical messages.

template()
stringType:
A format conforming to the default logfile format.Default:

Description: Specifies a template defining the logformat to be used in the destination. Macros are described in
Section 11.1.5, Macros of syslog-ng OSE (p. 214). Please note that for network destinations it might not be appropriate
to change the template as it changes the on-wire format of the syslog protocol which might not be tolerated by
stock syslog receivers (like syslogd or syslog-ng itself). For network destinations make sure the receiver can cope
with the custom format defined.

template_escape()
yes or noType:
noDefault:

Description: Turns on escaping for the ', ", and backspace characters in templated output files. This is useful for
generating SQL statements and quoting string contents so that parts of the log message are not interpreted as
commands to the SQL server.

throttle()
numberType:
0Default:

Description: Sets the maximum number of messages sent to the destination per second. Use this output-rate-limiting
functionality only when using large enough buffers as well to avoid the risk of losing messages. Specifying 0 or a
lower value sets the output limit to unlimited.

time_zone()
timezone in +/-HH:MM formatType:
unspecifiedDefault:

Description: Convert timestamps to the timezone specified by this option. If this option is not set then the original
timezone information in the message is used.

133www.balabit.com

pipe() destination options

ts_format()
rfc3164, bsd, rfc3339, isoType:
Use the global option (which defaults to rfc3164)Default:

Description: Override the global timestamp format (set in the global ts_format() parameter) for the specific
destination. For details, see Section ts_format() (p. 200).

7.6. Sending messages to external applications

The program() driver starts an external application or script and sends the log messages to its standard input
(stdin).

The program() driver has a single required parameter, specifying a program name to start. The program is executed
with the help of the current shell, so the command may include both file patterns and I/O redirections. For the
list of available optional parameters, see Section 7.6.1, program() destination options (p. 135).

Declaration:
program(command_to_run);

Note
The syslog-ng OSE application executes program destinations through the standard system shell. If the system shell is not
bash and you experience problems with the program destination, try changing the /bin/sh link to /bin/bash.

Note

■ The syslog-ng OSE application automatically restarts the external program if it exits for reliability reasons.
However it is not recommended to launch programs for single messages, because if the message rate is high,
launching several instances of an application might overload the system, resulting in Denial of Service.

■ Certain external applications buffer the log messages, which might cause unexpected latency and other problems.
For example, if you send the log messages to an external Perl script, Perl uses a line buffer for terminal output
and block buffer otherwise. You might want to disable buffering in the external application.

Warning
The syslog-ng OSE application must be able to start and restart the external program, and have the necessary permissions to
do so. For example, if your host is running AppArmor, you might have to modify your AppArmor configuration to enable
syslog-ng OSE to execute external applications.

Note that the message format does not include the priority and facility values by default. To add these values, specify
a template for the program destination, as shown in the following example.

Example 7.8. Using the program() destination driver

destination d_prog { program("/bin/script" template("<${PRI}>${DATE} ${HOST} ${MSG}\n");
); };

134www.balabit.com

Sending messages to external applications

7.6.1. program() destination options

This driver starts an external application or script and sends the log messages to its standard input (stdin).

The program() destination has the following options:

flags()
no_multi_line, syslog-protocolType:
empty setDefault:

Description: Flags influence the behavior of the destination driver.

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line.

■ syslog-protocol: The syslog-protocol flag instructs the driver to format the messages according to the
new IETF syslog protocol standard (RFC5424), but without the frame header. If this flag is enabled,
macros used for the message have effect only for the text of the message, the message header is formatted
to the new standard. Note that this flag is not needed for the syslog driver, and that the syslog driver
automatically adds the frame header to the messages.

flush_lines()
numberType:
Use global setting.Default:

Description: Specifies how many lines are sent to a destination at a time. The syslog-ng OSE application waits for
this number of lines to accumulate and sends them off in a single batch. Setting this number high increases throughput
as fully filled frames are sent to the destination, but also increases message latency. The latency can be limited by
the use of the flush-timeout option.

flush_timeout() (DEPRECATED)
time in millisecondsType:
Use global setting.Default:

Description: This is a deprecated option. Specifies the time syslog-ng waits for lines to accumulate in its output
buffer. For details, see the flush_lines option.

frac_digits()
numberType:
Value of the global option (which defaults to 0)Default:

Description: The syslog-ng application can store fractions of a second in the timestamps according to the ISO8601
format. The frac_digits() parameter specifies the number of digits stored. The digits storing the fractions are
padded by zeros if the original timestamp of the message specifies only seconds. Fractions can always be stored
for the time the message was received. Note that syslog-ng can add the fractions to non-ISO8601 timestamps as
well.

135www.balabit.com

program() destination options

log_fifo_size()
numberType:
Use global setting.Default:

Description: The number of messages that the output queue can store.

mark_mode()
internal | dst-idle | host-idle | periodical | none | globalAccepted values:
internal for pipe, program drivers

none for file, unix-dgram, unix-stream drivers

global for syslog, tcp, udp destinations

host-idle for global option

Default:

Description:The mark-mode() option can be set for the following destination drivers: file(), program(),
unix_dgram(), unix_stream(), udp(), udp6(), tcp(), tcp6(), pipe(), syslog() and in global option.

■ internal: When internal mark mode is selected, internal source should be placed in the log path as
this mode does not generate mark by itself at the destination. This mode only yelds the mark messages
from internal source. This is the mode as syslog-ng OSE 3.3 worked. MARK will be generated by internal
source if there was NO traffic on local sources:
file(), pipe(), unix-stream(), unix-dgram(), program()

■ dst-idle: Sends mark signal if there was NO traffic on destination drivers. Mark signal from internal
source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ host-idle: Sends mark signal if there was NO local message on destination drivers. For example
mark is generated even if messages were received from tcp. Mark signal from internal source will be
dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ periodical: Sends mark signal perodically, regardless of traffic on destination driver. Mark signal
from internal source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ none: Destination driver drops all MARK messages. If an explicit mark-mode() is not given to the drivers
where none is the default value, then none will be used.

■ global: Destination driver uses the global mark-mode setting. The syslog-ng interprets syntax error
if the global mark-mode is global.

136www.balabit.com

program() destination options

Note
In case of dst-idle, host-idle and periodical; MARK message will not be written in the destination, if it is not open
yet.

Available in syslog-ng OSE 3.4 and later.

suppress()
secondsType:
0 (disabled)Default:

Description: If several identical log messages would be sent to the destination without any other messages between
the identical messages (for example, an application repeated an error message ten times), syslog-ng can suppress
the repeated messages and send the message only once, followed by the Last message repeated n times.
message. The parameter of this option specifies the number of seconds syslog-ng waits for identical messages.

template()
stringType:
A format conforming to the default logfile format.Default:

Description: Specifies a template defining the logformat to be used in the destination. Macros are described in
Section 11.1.5, Macros of syslog-ng OSE (p. 214). Please note that for network destinations it might not be appropriate
to change the template as it changes the on-wire format of the syslog protocol which might not be tolerated by
stock syslog receivers (like syslogd or syslog-ng itself). For network destinations make sure the receiver can cope
with the custom format defined.

template_escape()
yes or noType:
noDefault:

Description: Turns on escaping for the ', ", and backspace characters in templated output files. This is useful for
generating SQL statements and quoting string contents so that parts of the log message are not interpreted as
commands to the SQL server.

throttle()
numberType:
0Default:

Description: Sets the maximum number of messages sent to the destination per second. Use this output-rate-limiting
functionality only when using large enough buffers as well to avoid the risk of losing messages. Specifying 0 or a
lower value sets the output limit to unlimited.

137www.balabit.com

program() destination options

time_zone()
timezone in +/-HH:MM formatType:
unspecifiedDefault:

Description: Convert timestamps to the timezone specified by this option. If this option is not set then the original
timezone information in the message is used.

ts_format()
rfc3164, bsd, rfc3339, isoType:
Use the global option (which defaults to rfc3164)Default:

Description: Override the global timestamp format (set in the global ts_format() parameter) for the specific
destination. For details, see Section ts_format() (p. 200).

7.7. Generating SMTP messages (e-mail) from logs

The smtp() driver sends e-mail messages triggered by log messages. The smtp() driver uses SMTP, without
needing external applications. You can customize the main fields of the e-mail, add extra headers, send the e-mail
to multiple recipients, and so on.

The subject(), body(), and header() fields may include macros which get expanded in the e-mail. For more
information on available macros see Section 11.1.5, Macros of syslog-ng OSE (p. 214).

The smtp() driver has the following required parameters: host(), port(), from(), to(), subject(), and
body(). For the list of available optional parameters, see Section 7.7.1, smtp() destination options (p. 139).

Note
The smtp() destination driver is available only in syslog-ng OSE 3.4 and later.

Declaration:
smtp(host() port() from() to() subject() body() options());

Example 7.9. Using the smtp() driver
The following example defines an smtp() destination using only the required parameters.

destination d_smtp {
smtp(

host("localhost")
port(25)
from("syslog-ng alert service" "noreply@example.com")
to("Admin #1" "admin1@example.com")
subject("[ALERT] Important log message of $LEVEL condition received from

$HOST/$PROGRAM!")
body("Hi!\nThe syslog-ng alerting service detected the following important log

message:\n $MSG\n-- \nsyslog-ng\n")
);

};

The following example sets some optional parameters as well.

138www.balabit.com

Generating SMTP messages (e-mail) from logs

destination d_smtp {
smtp(

host("localhost")
port(25)
from("syslog-ng alert service" "noreply@example.com")
to("Admin #1" "admin1@example.com")
to("Admin #2" "admin2@example.com")
cc("Admin BOSS" "admin.boss@example.com")
bcc("Blind CC" "blindcc@example.com")
subject("[ALERT] Important log message of $LEVEL condition received from

$HOST/$PROGRAM!")
body("Hi!\nThe syslog-ng alerting service detected the following important log

message:\n $MSG\n-- \nsyslog-ng\n")
header("X-Program", "$PROGRAM")
);

};

Example 7.10. Simple e-mail alerting with the smtp() driver
The following example sends an e-mail alert if the eth0 network interface of the host is down.

filter f_linkdown {
match("eth0: link down" value("MESSAGE"));

};
destination d_alert {

smtp(
host("localhost") port(25)
from("syslog-ng alert service" "syslog@localhost")
reply_to("Admins" "root@localhost")
to("Ennekem" "me@localhost")
subject("[SYSLOG ALERT]: eth0 link down")
body("Syslog received an alert:\n$MSG")
);

};

log {
source(s_local);
filter(f_linkdown);
destination(d_alert);

};

7.7.1. smtp() destination options

The smtp() sends e-mail messages using SMTP, without needing external applications. The smtp() destination
has the following options:

body()
stringType:
n/aDefault:

Description: The BODY field of the e-mail. You can also use macros in the string. Use \n to start a new line. For
example:

body("syslog-ng OSE received the following alert from $HOST:\n$MSG")

bcc()
stringType:
n/aDefault:

139www.balabit.com

smtp() destination options

Description: The BCC recipient of the e-mail (contents of the BCC field). You can specify the e-mail address, or
the name and the e-mail address. Set the bcc() option multiple times to send the e-mail to multiple recipients.
For example:

bcc("admin@example.com")

or

bcc("Admin" "admin@example.com")

or

bcc("Admin" "admin@example.com")
bcc("Admin2" "admin2@example.com")

cc()
stringType:
n/aDefault:

Description: The CC recipient of the e-mail (contents of the CC field). You can specify the e-mail address, or the
name and the e-mail address. Set the cc() option multiple times to send the e-mail to multiple recipients. For
example:

cc("admin@example.com")

or

cc("Admin" "admin@example.com")

or

cc("Admin" "admin@example.com")
cc("Admin2" "admin2@example.com")

from()
stringType:
n/aDefault:

Description: The sender of the e-mail (contents of the FROM field). You can specify the e-mail address, or the
name and the e-mail address. For example:

from("admin@example.com")

or

from("Admin" "admin@example.com")

If you specify the from() option multiple times, the last value will be used. Instead of the from() option, you
can also use sender(), which is just an alias of the from() option.

140www.balabit.com

smtp() destination options

header()
stringType:
n/aDefault:

Description: Adds an extra header to the e-mail with the specified name and content. The first parameter sets the
name of the header, the second one its value. The value of the header can contain macros. Set the header()
option multiple times to add multiple headers. For example:

header("X-Program", "$PROGRAM")

When using the header option, note the following points:

■ Do not use the header() option to set the values of headers that have dedicated options. Use it only
to add extra headers.

■ If you set the same custom header multiple times, only the first will be added to the e-mail, other
occurrences will be ignored.

■ It is not possible to set the DATE header.

host()
hostname or IP addressType:
n/aDefault:

Description: Hostname or IP address of the SMTP server.

Note
If you specify host="localhost", syslog-ng OSE will use a socket to connect to the local SMTP server. Use
host="127.0.0.1" to force TCP communication between syslog-ng OSE and the local SMTP server.

log_fifo_size()
numberType:
Use global setting.Default:

Description: The number of messages that the output queue can store.

port()
numberType:
25Default:

Description: The port number of the SMTP server.

reply-to()
stringType:
n/aDefault:

141www.balabit.com

smtp() destination options

Description: Replies of the recipient will be sent to this address (contents of the REPLY-TO field). You can
specify the e-mail address, or the name and the e-mail address. Set the reply-to() option multiple times to send
the e-mail to multiple recipients. For example:

reply-to("admin@example.com")

or

reply-to("Admin" "admin@example.com")

or

reply-to("Admin" "admin@example.com")
reply-to("Admin2" "admin2@example.com")

subject()
stringType:
n/aDefault:

Description: The SUBJECT field of the e-mail. You can also use macros. For example:

subject("[SYSLOG ALERT]: Critical error message received from $HOST")

If you specify the subject() option multiple times, the last value will be used.

to()
stringType:
localhostDefault:

Description: The recipient of the e-mail (contents of the TO field). You can specify the e-mail address, or the
name and the e-mail address. Set the to() option multiple times to send the e-mail to multiple recipients. For
example:

to("admin@example.com")

or

to("Admin" "admin@example.com")

or

to("Admin" "admin@example.com")
to("Admin2" "admin2@example.com")

7.8. Storing messages in an SQL database

The sql() driver sends messages into an SQL database. Currently the Microsoft SQL (MSSQL), MySQL, Oracle,
PostgreSQL, and SQLite databases are supported.

Declaration:
sql(database_type host_parameters database_parameters [options]);

142www.balabit.com

Storing messages in an SQL database

The sql() driver has the following required parameters: type(), database(), table, columns(), and values.

Warning
The syslog-ng application requires read and write access to the SQL table, otherwise it cannot verify that the destination table
exists.

Currently the syslog-ng application has default schemas for the different databases and uses these defaults if the database
schema (for example columns and column types) is not defined in the configuration file. However, these schemas will be
deprecated and specifying the exact database schema will be required in later versions of syslog-ng.

The table and value parameters can include macros to create tables and columns dynamically (for details, see
Section 11.1.5, Macros of syslog-ng OSE (p. 214)).

Warning
When using macros in table names, note that some databases limit the maximum allowed length of table names. Consult the
documentation of the database for details.

Inserting the records into the database is performed by a separate thread. The syslog-ng application automatically
performs the escaping required to insert the messages into the database.

Example 7.11. Using the sql() driver
The following example sends the log messages into a PostgreSQL database running on the logserver host. The messages
are inserted into the logs database, the name of the table includes the exact date and the name of the host sending the
messages. The syslog-ng application automatically creates the required tables and columns, if the user account used to connect
to the database has the required privileges.

destination d_sql {
sql(type(pgsql)
host("logserver") username("syslog-ng") password("password")
database("logs")
table("messages_${HOST}_${R_YEAR}${R_MONTH}${R_DAY}")
columns("datetime", "host", "program", "pid", "message")
values("{$R_DATE}", "${HOST}", "${PROGRAM}", "${PID}", "${MSGONLY}")
indexes("datetime", "host", "program", "pid", "message"));
};

The following example specifies the type of the database columns as well:

destination d_sql {
sql(type(pgsql)
host("logserver") username("syslog-ng") password("password")
database("logs")
table("messages_${HOST}_${R_YEAR}${R_MONTH}${R_DAY}")
columns("datetime varchar(16)", "host varchar(32)", "program varchar(20)", "pid

varchar(8)", "message varchar(200)")
values("${R_DATE}", "${HOST}", "${PROGRAM}", "${PID}", "${MSGONLY}")
indexes("datetime", "host", "program", "pid", "message"));

};

7.8.1. Using the sql() driver with an Oracle database

The Oracle sql destination has some special aspects that are important to note.

143www.balabit.com

Using the sql() driver with an Oracle database

■ The hostname of the database server is set in the tnsnames.ora file, not in the host parameter of
the sql() destination.
If the tnsnames.ora file is not located in the /etc directory (or in the /var/opt/oracle directory on
Solaris), set the following Oracle-related environment variables, so syslog-ng OSE will find the file:
ORACLE_BASE, ORACLE_HOME, and ORACLE_SID. For details, see the documentation of the Oracle
Instant Client.

■ You cannot use the same database() settings in more than one destination, because the database()
option of the SQL driver is just a reference to the connection string of the tnsnames.ora file. To
overcome this problem, you can duplicate the connections in the tnsnames.ora file under a different
name, and use a different table in each Oracle destination in syslog-ng OSE.

■ As certain database versions limit the maximum length of table names, macros in the table names should
be used with care.

■ In the current version of syslog-ng OSE, the types of database columns must be explicitly set for the
Oracle destination. The column used to store the text part of the syslog messages should be able to store
messages as long as the longest message permitted by syslog-ng, therefore it is usually recommended to
use the varchar2 or clob column type. (The maximum length of the messages can be set using the
log_msg_size() option.) For details, see the following example.

■ The Oracle Instant Client used by syslog-ng OSE supports only the following character sets:

• Single-byte character sets: US7ASCII, WE8DEC, WE8MSWIN1252, and WE8ISO8859P1

• Unicode character sets: UTF8, AL16UTF16, and AL32UTF8

Example 7.12. Using the sql() driver with an Oracle database
The following example sends the log messages into an Oracle database running on the logserver host, which must be set
in the /etc/tnsnames.ora file. The messages are inserted into the LOGS database, the name of the table includes the exact
date when the messages were sent. The syslog-ng application automatically creates the required tables and columns, if the
user account used to connect to the database has the required privileges.

destination d_sql {
sql(type(oracle)
username("syslog-ng") password("password")
database("LOGS")
table("msgs_${R_YEAR}${R_MONTH}${R_DAY}")
columns("datetime varchar(16)", "host varchar(32)", "program varchar(32)", "pid

varchar(8)", "message varchar2")
values("${R_DATE}", "${HOST}", "${PROGRAM}", "${PID}", "${MSGONLY}")
indexes("datetime", "host", "program", "pid", "message"));
};

The Oracle Instant Client retrieves the address of the database server from the /etc/tnsnames.ora file. Edit or create
this file as needed for your configuration. A sample is provided below.

LOGS =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)
(HOST = logserver)
(PORT = 1521))
)
(CONNECT_DATA =
(SERVICE_NAME = EXAMPLE.SERVICE)
)
)

144www.balabit.com

Using the sql() driver with an Oracle database

7.8.2. Using the sql() driver with a Microsoft SQL database

The mssql database driver can access Microsoft SQL (MSSQL) destinations. This driver has some special aspects
that are important to note.

■ The date format used by the MSSQL database must be explicitly set in the /etc/locales.conf file
of the syslog-ng server. For details, see the following example.

■ As certain database versions limit the maximum length of table names, macros in the table names should
be used with care.

■ In the current version of syslog-ng OSE, the types of database columns must be explicitly set for the
MSSQL destination.

Warning
The following column types cannot be used in MSSQL destinations: nchar, nvarchar, ntext, and xml.

■ The column used to store the text part of the syslog messages should be able to store messages as long
as the longest message permitted by syslog-ng. The varchar column type can store maximum 4096
bytes-long messages. The maximum length of the messages can be set using the log_msg_size()
option. For details, see the following example.

■ Remote access for SQL users must be explicitly enabled on the Microsoft Windows host running the
Microsoft SQL Server. For details, see Procedure 3.3, Configuring Microsoft SQL Server to accept logs from
syslog-ng (p. 31).

Example 7.13. Using the sql() driver with an MSSQL database
The following example sends the log messages into an MSSQL database running on the logserver host. The messages are
inserted into the syslogng database, the name of the table includes the exact date when the messages were sent. The syslog-ng
application automatically creates the required tables and columns, if the user account used to connect to the database has the
required privileges.

destination d_mssql {
sql(type(mssql) host("logserver") port("1433")
username("syslogng") password("syslogng") database("syslogng")
table("msgs_${R_YEAR}${R_MONTH}${R_DAY}")columns("datetime varchar(16)", "host

varchar(32)",
"program varchar(32)", "pid varchar(8)", "message varchar(4096)")
values("${R_DATE}", "${HOST}", "${PROGRAM}", "${PID}", "${MSGONLY}")
indexes("datetime", "host", "program", "pid"));
};

The date format used by the MSSQL database must be explicitly set in the /etc/locales.conf file of the syslog-ng server.
Edit or create this file as needed for your configuration. A sample is provided below.

[default]
date = "%Y-%m-%d %H:%M:%S"

7.8.3. The way syslog-ng interacts with the database

Used SQL operations by syslog-ng.

Create table:

145www.balabit.com

Using the sql() driver with a Microsoft SQL database

■ If the given table does not exist, syslog-ng tries to create it with the given column types.

■ The syslog-ng OSE application automatically creates the required tables and columns, if the user account
used to connect to the database has the required privileges.

■ If syslog-ng cannot create or alter a table, it tries to do it again when reach the next time_reopen.

Alter table:

■ If the table structure is different from given structure in an existing table, syslog-ng tries to add columns
in this table but never will delete or modify an existing column.

■ If syslog-ng OSE cannot create or alter a table, it tries to do it again when reach the next time_reopen.

■ The syslog-ng OSE application requires read and write access to the SQL table, otherwise it cannot
verify that the destination table exists.

Insert table:

■ Insert new records in a table.

■ Inserting the records into the database is performed by a separate thread.

■ The syslog-ng OSE application automatically performs the escaping required to insert the messages into
the database.

■ If insert returns with error, syslog-ng tries to insert the message +two times by default, then drops it.
Retrying time is the value of time_reopen().

Encoding.

The syslog-ng OSE application uses UTF-8 by default when writes logs into database.

Start/stop and reload.

Start:

■ The syslog-ng OSE application will connect to database automatically after starting regardless existing
incoming messages.

Stop:

■ The syslog-ng OSE application will close the connection to database before shutting down.

Possibility of losing logs:

■ The syslog-ng OSE application cannot lose logs during shutting down if disk buffer was given and it is
not full yet.

■ The syslog-ng OSE application cannot lose logs during shutting down if disk buffer was not given.

Reload:

■ The syslog-ng OSE application will close the connection to database if it received SIGHUP signal
(reload).

■ It will reconnect to the database when it tries to send a new message to this database again.

Macros:

The value of ${SEQNUM} macro will be overrided by sql driver regardless of local or relayed incoming message.

146www.balabit.com

The way syslog-ng interacts with the database

It will be grown continously.

7.8.3.1. MySQL-specific interaction methods

To specify the socket to use, set and export the MYSQL_UNIX_PORT environment variable, for example
MYSQL_UNIX_PORT=/var/lib/mysql/mysql.sock; export MYSQL_UNIX_PORT.

7.8.3.2. MsSQL-specific interaction methods

In SQL Server 2005 this restriction is lifted - kind of. The total length of all key columns in an index cannot exceed
900 bytes.

If you are using null() in your configuration, be sure that the columns allow NULL to insert. Give the column as
the following example: "datetime varchar(16) NULL".

The date format used by the MSSQL database must be explicitly set in the /etc/locales.conf file of the
syslog-ng server. [default] date = "%Y-%m-%d %H:%M:%S".

7.8.4. sql() destination options

This driver sends messages into an SQL database. The sql() destination has the following options:

columns()
string listType:
"date", "facility", "level", "host", "program", "pid", "message"Default:

Description: Name of the columns storing the data in fieldname [dbtype] format. The [dbtype] parameter
is optional, and specifies the type of the field. By default, syslog-ng creates text columns. Note that not every
database engine can index text fields.

Warning
The following column types cannot be used in MSSQL destinations: nchar, nvarchar, ntext, and xml.

database()
stringType:
logsDefault:

Description: Name of the database that stores the logs. Macros cannot be used in database name. Also, when
using an Oracle database, you cannot use the same database() settings in more than one destination.

dbd-option()
stringType:
empty stringDefault:

147www.balabit.com

sql() destination options

Description: Specify database options that are set whenever syslog-ng OSE connects to the database server. Consult
the documentation of your database server for details on the available options. Syntax:

dbd-option(OPTION_NAME VALUE)

OPTION_NAME is always a string, VALUE is a string or a number. For example:

dbd-option("null.sleep.connect" 1)
dbd-option("null.sleep.query" 5)

flags()
list of flagsType:
empty stringDefault:

Description: Flags related to the sql() destination.

■ dont-create-tables: Enable this flag to prevent syslog-ng OSE from creating non-existing database tables
automatically. The syslog-ng OSE application typically has to create tables if you use macros in the table
names. Available in syslog-ng OSE version 3.2 and later.

■ explicit-commits: By default, syslog-ng OSE commits every log message to the target database individually.
When the explicit-commits option is enabled, messages are committed in batches. This improves
the performance, but results in some latency, as the messages are not immediately sent to the database.
The size and frequency of batched commits can be set using the flush_lines and flush_timeout
parameters. The explicit-commits option is available in syslog-ng OSE version 3.2 and later.

Example 7.14. Setting flags for SQL destinations
The following example sets the dont-create-tables and explicit-commits flags for an sql() destination.

flags(dont-create-tables,explicit-commits)

flush_lines()
numberType:
Use global setting.Default:

Description: Specifies how many lines are sent to a destination at a time. The syslog-ng OSE application waits for
this number of lines to accumulate and sends them off in a single batch. Setting this number high increases throughput
as fully filled frames are sent to the destination, but also increases message latency. The latency can be limited by
the use of the flush-timeout option.

flush_timeout() (DEPRECATED)
time in millisecondsType:
Use global setting.Default:

Description: This is a deprecated option. Specifies the time syslog-ng waits for lines to accumulate in its output
buffer. For details, see the flush_lines option.

148www.balabit.com

sql() destination options

frac_digits()
numberType:
Value of the global option (which defaults to 0)Default:

Description: The syslog-ng application can store fractions of a second in the timestamps according to the ISO8601
format. The frac_digits() parameter specifies the number of digits stored. The digits storing the fractions are
padded by zeros if the original timestamp of the message specifies only seconds. Fractions can always be stored
for the time the message was received. Note that syslog-ng can add the fractions to non-ISO8601 timestamps as
well.

host()
hostname or IP addressType:
n/aDefault:

Description: Hostname of the database server. Note that Oracle destinations do not use this parameter, but retrieve
the hostname from the /etc/tnsnames.ora file.

Note
If you specify host="localhost", syslog-ng will use a socket to connect to the local database server. Use
host="127.0.0.1" to force TCP communication between syslog-ng and the local database server.

To specify the socket to use, set and export the MYSQL_UNIX_PORT environment variable, for example
MYSQL_UNIX_PORT=/var/lib/mysql/mysql.sock; export MYSQL_UNIX_PORT.

indexes()
string listType:
"date", "facility", "host", "program"Default:

Description: The list of columns that are indexed by the database to speed up searching. To disable indexing for
the destination, include the empty indexes() parameter in the destination, simply omitting the indexes parameter
will cause syslog-ng to request indexing on the default columns.

The syslog-ng OSE application will create the name of indexes automaticaly with the following method:

■ In case of MsSQL, PostgreSQL, MySQL or SQLite or (Oracle but tablename < 30 characters):
{table}_{column}_idx.

■ In case of Oracle and tablename > 30 characters: md5sum of {table}_{column}-1 and the first
character will be replaced by "i" character and the md5sum will be truncated to 30 characters.

local_time_zone()
name of the timezone or the timezone offsetType:
The local timezone.Default:

149www.balabit.com

sql() destination options

Description: Sets the timezone used when expanding filename and tablename templates. The timezone can be
specified as using the name of the (for example time_zone("Europe/Budapest")), or as the timezone offset
(for example +01:00). The valid timezone names are listed under the /usr/share/zoneinfo directory.

log_fifo_size()
numberType:
Use global setting.Default:

Description: The number of messages that the output queue can store.

null()
stringType:

Default:

Description: If the content of a column matches the string specified in the null() parameter, the contents of
the column will be replaced with an SQL NULL value. If unset (by default), the option does not match on any
string. For details, see the Example 7.15, Using SQL NULL values (p. 150).

Example 7.15. Using SQL NULL values
The null() parameter of the SQL driver can be used to replace the contents of a column with a special SQL NULL value.
To replace every column that contains an empty string with NULL, use the null("") option, for example

destination d_sql {
sql(type(pgsql)
host("logserver") username("syslog-ng") password("password")
database("logs")
table("messages_${HOST}_${R_YEAR}${R_MONTH}${R_DAY}")
columns("datetime", "host", "program", "pid", "message")
values("${R_DATE}", "${HOST}", "${PROGRAM}", "${PID}", "${MSGONLY}")
indexes("datetime", "host", "program", "pid", "message")
null(""));
};

To replace only a specific column (for example pid) if it is empty, assign a default value to the column, and use this default
value in the null() parameter:

destination d_sql {
sql(type(pgsql)
host("logserver") username("syslog-ng") password("password")
database("logs")
table("messages_${HOST}_${R_YEAR}${R_MONTH}${R_DAY}")
columns("datetime", "host", "program", "pid", "message")
values("${R_DATE}", "${HOST}", "${PROGRAM}", "${PID:-@@NULL@@}",

"${MSGONLY}")
indexes("datetime", "host", "program", "pid", "message")
null("@@NULL@@"));
};

Ensure that the default value you use does not appear in the actual log messages, because other occurrences of this string will
be replaced with NULL as well.

password()
stringType:
n/aDefault:

150www.balabit.com

sql() destination options

Description: Password of the database user.

port()
numberType:
1433 TCP for MSSQL, 3306 TCP for MySQL, 1521 for Oracle, and 5432 TCP for PostgreSQLDefault:

Description: The port number to connect to.

retry_sql_inserts
numberType:
3Default:

Description: The number of insertion attempts. If syslog-ng OSE could not insert a message into the database, it
will repeat the attempt until the number of attempts reaches retry_sql_inserts, then drops the line. For
example, syslog-ng OSE will try to insert a message maximum three times by default (once for first insertion and
twice if the first insertion was failed).

session-statements()
comma-separated list of SQL statementsType:
empty stringDefault:

Description: Specifies one or more SQL-like statement which is executed after syslog-ng OSE has successfully
connected to the database. For example:

session-statements("SET COLLATION_CONNECTION='utf8_general_ci'")

Warning
The syslog-ng OSE application does not validate or limit the contents of customized queries. Consequently, queries performed
with a user with write-access can potentially modify or even harm the database. Use customized queries with care, and only
for your own responsibility.

table()
stringType:
messagesDefault:

Description: Name of the database table to use (can include macros). When using macros, note that some databases
limit the length of table names.

time_zone()
timezone in +/-HH:MM formatType:
unspecifiedDefault:

Description: Convert timestamps to the timezone specified by this option. If this option is not set then the original
timezone information in the message is used.

151www.balabit.com

sql() destination options

type()
mssql, mysql, oracle, pgsql, or sqlite3Type:
mysqlDefault:

Description: Specifies the type of the database, that is, the DBI database driver to use. Use the mssql option to
send logs to an MSSQL database. For details, see the examples of the databases on the following sections.

username()
stringType:
n/aDefault:

Description: Name of the database user.

values()
string listType:
"${R_YEAR}-${R_MONTH}-${R_DAY}, ${R_HOUR}:${R_MIN}:${R_SEC}", "${FACILITY}",
"${LEVEL}", "${HOST}", "${PROGRAM}", "${PID}", "${MSGONLY}"

Default:

Description: The parts of the message to store in the fields specified in the columns parameter.

It is possible to give a special value calling: default (without quotation marks).It means that the value will be used
that is the default of the column type of this value.

Example 7.16. Value: default

columns("date datetime", "host varchar(32)", "row_id serial")
values("${R_DATE}", "${HOST}", default)

7.9. Sending messages to a remote logserver using the IETF-syslog protocol

The syslog() driver sends messages to a remote host (for example a syslog-ng server or relay) on the local intranet
or internet using the new standard syslog protocol developed by IETF (for details about the new protocol, see
Section 2.8.2, IETF-syslog messages (p. 12)). The protocol supports sending messages using the UDP, TCP, or the
encrypted TLS networking protocols.

The required arguments of the driver are the address of the destination host (where messages should be sent). The
transport method (networking protocol) is optional, syslog-ng uses the TCP protocol by default. For the list of
available optional parameters, see Section 7.9.1, syslog() destination options (p. 153).

Declaration:
syslog(host transport [options]);

Note
Note that the syslog destination driver has required parameters, while the source driver defaults to the local bind address,
and every parameter is optional.

152www.balabit.com

Sending messages to a remote logserver using the IETF-syslog protocol

The udp transport method automatically sends multicast packets if a multicast destination address is specified. The
tcp and tls methods do not support multicasting.

Note
The default ports for the different transport protocols are as follows: UDP — 514; TLS — 6514.

Example 7.17. Using the syslog() driver

destination d_tcp { syslog("10.1.2.3" transport("tcp") port(1999) localport(999)); };

If name resolution is configured, the hostname of the target server can be used as well.

destination d_tcp { syslog("target_host" transport("tcp") port(1999) localport(999)); };

Send the log messages using TLS encryption and use mutual authentication. For details on the encryption and authentication
options, see Section 10.4, TLS options (p. 208).

destination d_syslog_tls{
syslog("10.100.20.40"
transport("tls")
port(6514)
tls(peer-verify(required-trusted)
ca_dir('/opt/syslog-ng/etc/syslog-ng/keys/ca.d/')
key_file('/opt/syslog-ng/etc/syslog-ng/keys/client_key.pem')
cert_file('/opt/syslog-ng/etc/syslog-ng/keys/client_certificate.pem'))
);};

7.9.1. syslog() destination options

The syslog() driver sends messages to a remote host (for example a syslog-ng server or relay) on the local intranet
or internet using the RFC5424 syslog protocol developed by IETF (for details about the protocol, see Section 2.8.2,
IETF-syslog messages (p. 12)). The protocol supports sending messages using the UDP, TCP, or the encrypted TLS
networking protocols.

These destinations have the following options:

flags()
no_multi_line, syslog-protocolType:
empty setDefault:

Description: Flags influence the behavior of the destination driver.

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line.

■ syslog-protocol: The syslog-protocol flag instructs the driver to format the messages according to the
new IETF syslog protocol standard (RFC5424), but without the frame header. If this flag is enabled,
macros used for the message have effect only for the text of the message, the message header is formatted
to the new standard. Note that this flag is not needed for the syslog driver, and that the syslog driver
automatically adds the frame header to the messages.

153www.balabit.com

syslog() destination options

flush_lines()
numberType:
Use global setting.Default:

Description: Specifies how many lines are sent to a destination at a time. The syslog-ng OSE application waits for
this number of lines to accumulate and sends them off in a single batch. Setting this number high increases throughput
as fully filled frames are sent to the destination, but also increases message latency. The latency can be limited by
the use of the flush-timeout option.

flush_timeout() (DEPRECATED)
time in millisecondsType:
Use global setting.Default:

Description: This is a deprecated option. Specifies the time syslog-ng waits for lines to accumulate in its output
buffer. For details, see the flush_lines option.

frac_digits()
numberType:
Value of the global option (which defaults to 0)Default:

Description: The syslog-ng application can store fractions of a second in the timestamps according to the ISO8601
format. The frac_digits() parameter specifies the number of digits stored. The digits storing the fractions are
padded by zeros if the original timestamp of the message specifies only seconds. Fractions can always be stored
for the time the message was received. Note that syslog-ng can add the fractions to non-ISO8601 timestamps as
well.

ip_tos()
numberType:
0Default:

Description: Specifies the Type-of-Service value of outgoing packets.

ip_ttl()
numberType:
0Default:

Description: Specifies the Time-To-Live value of outgoing packets.

keep-alive()
yes or noType:
yesDefault:

154www.balabit.com

syslog() destination options

Description: Specifies whether connections to destinations should be closed when syslog-ng is reloaded. Note
that this applies to the client (destination) side of the syslog-ng connections, server-side (source) connections are
always reopened after receiving a HUP signal unless the keep-alive option is enabled for the source.

localip()
stringType:
0.0.0.0Default:

Description: The IP address to bind to before connecting to target.

localport()
numberType:
0Default:

Description: The port number to bind to. Messages are sent from this port.

log_fifo_size()
numberType:
Use global setting.Default:

Description: The number of messages that the output queue can store.

mark_freq()
numberAccepted values:
1200Default:

Description: An alias for the obsolete mark() option, retained for compatibility with syslog-ng version 1.6.x. The
number of seconds between two MARK messages. MARK messages are generated when there was no message traffic
to inform the receiver that the connection is still alive. If set to zero (0), no MARKmessages are sent. The mark-freq
can be set for global option and/or every MARK capable destination driver if mark-mode is periodical or dst-idle
or host-idle. If mark-freq is not defined in the destination, then the mark-freq will be inherited from the global
options. If the destination uses internal mark-mode, then the global mark-freq will be valid (does not matter
what mark-freq set in the destination side).

mark_mode()
internal | dst-idle | host-idle | periodical | none | globalAccepted values:
internal for pipe, program drivers

none for file, unix-dgram, unix-stream drivers

global for syslog, tcp, udp destinations

host-idle for global option

Default:

155www.balabit.com

syslog() destination options

Description:The mark-mode() option can be set for the following destination drivers: file(), program(),
unix_dgram(), unix_stream(), udp(), udp6(), tcp(), tcp6(), pipe(), syslog() and in global option.

■ internal: When internal mark mode is selected, internal source should be placed in the log path as
this mode does not generate mark by itself at the destination. This mode only yelds the mark messages
from internal source. This is the mode as syslog-ng OSE 3.3 worked. MARK will be generated by internal
source if there was NO traffic on local sources:
file(), pipe(), unix-stream(), unix-dgram(), program()

■ dst-idle: Sends mark signal if there was NO traffic on destination drivers. Mark signal from internal
source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ host-idle: Sends mark signal if there was NO local message on destination drivers. For example
mark is generated even if messages were received from tcp. Mark signal from internal source will be
dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ periodical: Sends mark signal perodically, regardless of traffic on destination driver. Mark signal
from internal source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ none: Destination driver drops all MARK messages. If an explicit mark-mode() is not given to the drivers
where none is the default value, then none will be used.

■ global: Destination driver uses the global mark-mode setting. The syslog-ng interprets syntax error
if the global mark-mode is global.

Note
In case of dst-idle, host-idle and periodical; MARK message will not be written in the destination, if it is not open
yet.

Available in syslog-ng OSE 3.4 and later.

port() or destport()
numberType:
601Default:

Description: The port number to connect to. Note that the default port numbers used by syslog-ng do not comply
with the latest RFC which was published after the release of syslog-ng 3.0.2, therefore the default port numbers
will change in the future releases.

156www.balabit.com

syslog() destination options

so_broadcast()
yes or noType:
noDefault:

Description: This option controls the SO_BROADCAST socket option required to make syslog-ng send messages
to a broadcast address. For details, see the socket(7) manual page.

so_keepalive()
yes or noType:
noDefault:

Description: Enables keep-alive messages, keeping the socket open. This only effects TCP and UNIX-stream
sockets. For details, see the socket(7) manual page.

so_rcvbuf()
numberType:
0Default:

Description: Specifies the size of the socket receive buffer in bytes. For details, see the socket(7) manual page.

so_sndbuf()
numberType:
0Default:

Description:Specifies the size of the socket send buffer in bytes. For details, see the socket(7) manual page.

spoof_source()
yes or noType:
noDefault:

Description: Enables source address spoofing. This means that the host running syslog-ng generates UDP packets
with the source IP address matching the original sender of the message. It is useful when you want to perform
some kind of preprocessing via syslog-ng then forward messages to your central log management solution with the
source address of the original sender. This option only works for UDP destinations though the original message
can be received by TCP as well. This option is only available if syslog-ng was compiled using the
--enable-spoof-source configuration option.

suppress()
secondsType:
0 (disabled)Default:

Description: If several identical log messages would be sent to the destination without any other messages between
the identical messages (for example, an application repeated an error message ten times), syslog-ng can suppress

157www.balabit.com

syslog() destination options

the repeated messages and send the message only once, followed by the Last message repeated n times.
message. The parameter of this option specifies the number of seconds syslog-ng waits for identical messages.

tcp-keepalive-intvl()
number [seconds]Type:
0Default:

Description: Specifies the interval (number of seconds) between subsequential keepalive probes, regardless of the
traffic exchanged in the connection. This option is equivalent to /proc/sys/net/ipv4/tcp_keepalive_intvl.
The default value is 0, which means using the kernel default.

Warning
The tcp-keepalive-time(), tcp-keepalive-probes(), and tcp-keepalive-intvl() options only work on
platforms which support the TCP_KEEPCNT, TCP_KEEPIDLE,and TCP_KEEPINTVL setsockopts. Currently, this is Linux.

A connection that has no traffic is closed after tcp-keepalive-time() + tcp-keepalive-intvl() *
tcp-keepalive-probes() seconds.

Available in syslog-ng OSE version 3.4 and later.

tcp-keepalive-probes()
numberType:
0Default:

Description: Specifies the number of unacknowledged probes to send before considering the connection dead.
This option is equivalent to /proc/sys/net/ipv4/tcp_keepalive_probes. The default value is 0, which
means using the kernel default.

Warning
The tcp-keepalive-time(), tcp-keepalive-probes(), and tcp-keepalive-intvl() options only work on
platforms which support the TCP_KEEPCNT, TCP_KEEPIDLE,and TCP_KEEPINTVL setsockopts. Currently, this is Linux.

A connection that has no traffic is closed after tcp-keepalive-time() + tcp-keepalive-intvl() *
tcp-keepalive-probes() seconds.

Available in syslog-ng OSE version 3.4 and later.

tcp-keepalive-time()
number [seconds]Type:
0Default:

Description: Specifies the interval (in seconds) between the last data packet sent and the first keepalive probe.
This option is equivalent to /proc/sys/net/ipv4/tcp_keepalive_time. The default value is 0, which
means using the kernel default.

158www.balabit.com

syslog() destination options

Warning
The tcp-keepalive-time(), tcp-keepalive-probes(), and tcp-keepalive-intvl() options only work on
platforms which support the TCP_KEEPCNT, TCP_KEEPIDLE,and TCP_KEEPINTVL setsockopts. Currently, this is Linux.

A connection that has no traffic is closed after tcp-keepalive-time() + tcp-keepalive-intvl() *
tcp-keepalive-probes() seconds.

Available in syslog-ng OSE version 3.4 and later.

template()
stringType:
A format conforming to the default logfile format.Default:

Description: Specifies a template defining the logformat to be used in the destination. Macros are described in
Section 11.1.5, Macros of syslog-ng OSE (p. 214). Please note that for network destinations it might not be appropriate
to change the template as it changes the on-wire format of the syslog protocol which might not be tolerated by
stock syslog receivers (like syslogd or syslog-ng itself). For network destinations make sure the receiver can cope
with the custom format defined.

template_escape()
yes or noType:
noDefault:

Description: Turns on escaping for the ', ", and backspace characters in templated output files. This is useful for
generating SQL statements and quoting string contents so that parts of the log message are not interpreted as
commands to the SQL server.

throttle()
numberType:
0Default:

Description: Sets the maximum number of messages sent to the destination per second. Use this output-rate-limiting
functionality only when using large enough buffers as well to avoid the risk of losing messages. Specifying 0 or a
lower value sets the output limit to unlimited.

time_zone()
timezone in +/-HH:MM formatType:
unspecifiedDefault:

Description: Convert timestamps to the timezone specified by this option. If this option is not set then the original
timezone information in the message is used.

159www.balabit.com

syslog() destination options

tls()
tls optionsType:
n/aDefault:

Description: This option sets various options related to TLS encryption, for example, key/certificate files and
trusted CA locations. TLS can be used only with tcp-based transport protocols. For details, see Section 10.4, TLS
options (p. 208).

transport()
udp, tcp, or tlsType:
tcpDefault:

Description: Specifies the protocol used to send messages to the destination server.

ts_format()
rfc3164, bsd, rfc3339, isoType:
Use the global option (which defaults to rfc3164)Default:

Description: Override the global timestamp format (set in the global ts_format() parameter) for the specific
destination. For details, see Section ts_format() (p. 200).

7.10. Sending messages to a remote logserver using the legacy BSD-syslog protocol

Note
The tcp(), tcp6(), udp(), and udp6() drivers will be deprecated in later versions, use the network() driver instead.

The tcp(), tcp6(), udp(), and udp6() drivers send messages to another host (for example a syslog-ng server
or relay) on the local intranet or internet using the UDP or TCP protocol. The tcp6() and udp6() drivers use
the IPv6 network protocol.

All four drivers have a single required parameter specifying the destination host address, where messages should
be sent. For the list of available optional parameters, see Section 7.10.1, tcp(), tcp6(), udp(), and udp6() destination
options (p. 161).

The udp() and udp6() drivers automatically send multicast packets if a multicast destination address is specified.
The tcp() and tcp6() drivers do not support multicasting.

Declaration:
tcp(host [options]);
udp(host [options]);
tcp6(host [options]);
udp6(host [options]);

160www.balabit.com

Sending messages to a remote logserver using the legacy BSD-syslog protocol

Example 7.18. Using the tcp() driver

destination d_tcp { tcp("10.1.2.3" port(1999) localport(999)); };

If name resolution is configured, the hostname of the target server can be used as well.

destination d_tcp { tcp("target_host" port(1999) localport(999)); };

To send messages using the IETF-syslog message format without using the IETF-syslog protocol, enable the
syslog-protocol flag:

destination d_tcp { tcp("10.1.2.3" port(1999) flags(syslog-protocol)); };

(For details on how to use the IETF-syslog protocol, see Section 7.9.1, syslog() destination options (p. 153).)

Using an IPv6 address:

tcp6("fd00:abcd:4321:2:20c:29ff:fea8:9671" port(514));

7.10.1. tcp(), tcp6(), udp(), and udp6() destination options

This driver sends messages to another host on the local intranet or internet according to RFC3164 using the UDP
or TCP protocol. The tcp6() and udp6() drivers use the IPv6 network protocol.

Note
When using IPv6 destination addresses, always enclose the address between double-quotes:

tcp6("fd00:abcd:4321:2:20c:29ff:fea8:9671" port(514));

These destinations have the following options:

flags()
no_multi_line, syslog-protocolType:
empty setDefault:

Description: Flags influence the behavior of the destination driver.

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line.

■ syslog-protocol: The syslog-protocol flag instructs the driver to format the messages according to the
new IETF syslog protocol standard (RFC5424), but without the frame header. If this flag is enabled,
macros used for the message have effect only for the text of the message, the message header is formatted
to the new standard. Note that this flag is not needed for the syslog driver, and that the syslog driver
automatically adds the frame header to the messages.

flush_lines()
numberType:
Use global setting.Default:

Description: Specifies how many lines are sent to a destination at a time. The syslog-ng OSE application waits for
this number of lines to accumulate and sends them off in a single batch. Setting this number high increases throughput

161www.balabit.com

tcp(), tcp6(), udp(), and udp6() destination options

as fully filled frames are sent to the destination, but also increases message latency. The latency can be limited by
the use of the flush-timeout option.

flush_timeout() (DEPRECATED)
time in millisecondsType:
Use global setting.Default:

Description: This is a deprecated option. Specifies the time syslog-ng waits for lines to accumulate in its output
buffer. For details, see the flush_lines option.

frac_digits()
numberType:
Value of the global option (which defaults to 0)Default:

Description: The syslog-ng application can store fractions of a second in the timestamps according to the ISO8601
format. The frac_digits() parameter specifies the number of digits stored. The digits storing the fractions are
padded by zeros if the original timestamp of the message specifies only seconds. Fractions can always be stored
for the time the message was received. Note that syslog-ng can add the fractions to non-ISO8601 timestamps as
well.

ip_tos()
numberType:
0Default:

Description: Specifies the Type-of-Service value of outgoing packets.

ip_ttl()
numberType:
0Default:

Description: Specifies the Time-To-Live value of outgoing packets.

keep-alive()
yes or noType:
yesDefault:

Description: Specifies whether connections to destinations should be closed when syslog-ng is reloaded. Note
that this applies to the client (destination) side of the syslog-ng connections, server-side (source) connections are
always reopened after receiving a HUP signal unless the keep-alive option is enabled for the source.

localip()
stringType:
0.0.0.0Default:

162www.balabit.com

tcp(), tcp6(), udp(), and udp6() destination options

Description: The IP address to bind to before connecting to target.

localport()
numberType:
0Default:

Description: The port number to bind to. Messages are sent from this port.

mark_mode()
internal | dst-idle | host-idle | periodical | none | globalAccepted values:
internal for pipe, program drivers

none for file, unix-dgram, unix-stream drivers

global for syslog, tcp, udp destinations

host-idle for global option

Default:

Description:The mark-mode() option can be set for the following destination drivers: file(), program(),
unix_dgram(), unix_stream(), udp(), udp6(), tcp(), tcp6(), pipe(), syslog() and in global option.

■ internal: When internal mark mode is selected, internal source should be placed in the log path as
this mode does not generate mark by itself at the destination. This mode only yelds the mark messages
from internal source. This is the mode as syslog-ng OSE 3.3 worked. MARK will be generated by internal
source if there was NO traffic on local sources:
file(), pipe(), unix-stream(), unix-dgram(), program()

■ dst-idle: Sends mark signal if there was NO traffic on destination drivers. Mark signal from internal
source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ host-idle: Sends mark signal if there was NO local message on destination drivers. For example
mark is generated even if messages were received from tcp. Mark signal from internal source will be
dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ periodical: Sends mark signal perodically, regardless of traffic on destination driver. Mark signal
from internal source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ none: Destination driver drops all MARK messages. If an explicit mark-mode() is not given to the drivers
where none is the default value, then none will be used.

163www.balabit.com

tcp(), tcp6(), udp(), and udp6() destination options

■ global: Destination driver uses the global mark-mode setting. The syslog-ng interprets syntax error
if the global mark-mode is global.

Note
In case of dst-idle, host-idle and periodical; MARK message will not be written in the destination, if it is not open
yet.

Available in syslog-ng OSE 3.4 and later.

port() or destport()
numberType:
514Default:

Description: The port number to connect to. Note that the default port numbers used by syslog-ng do not comply
with the latest RFC which was published after the release of syslog-ng 3.0.2, therefore the default port numbers
will change in the future releases.

Note
The TCP port 514 is reserved for use with rshell, so select a different port if syslog-ng and rshell is used at the same
time.

so_broadcast()
yes or noType:
noDefault:

Description: This option controls the SO_BROADCAST socket option required to make syslog-ng send messages
to a broadcast address. For details, see the socket(7) manual page.

so_keepalive()
yes or noType:
noDefault:

Description: Enables keep-alive messages, keeping the socket open. This only effects TCP and UNIX-stream
sockets. For details, see the socket(7) manual page.

so_rcvbuf()
numberType:
0Default:

Description: Specifies the size of the socket receive buffer in bytes. For details, see the socket(7) manual page.

164www.balabit.com

tcp(), tcp6(), udp(), and udp6() destination options

so_sndbuf()
numberType:
0Default:

Description:Specifies the size of the socket send buffer in bytes. For details, see the socket(7) manual page.

spoof_source()
yes or noType:
noDefault:

Description: Enables source address spoofing. This means that the host running syslog-ng generates UDP packets
with the source IP address matching the original sender of the message. It is useful when you want to perform
some kind of preprocessing via syslog-ng then forward messages to your central log management solution with the
source address of the original sender. This option only works for UDP destinations though the original message
can be received by TCP as well. This option is only available if syslog-ng was compiled using the
--enable-spoof-source configuration option.

suppress()
secondsType:
0 (disabled)Default:

Description: If several identical log messages would be sent to the destination without any other messages between
the identical messages (for example, an application repeated an error message ten times), syslog-ng can suppress
the repeated messages and send the message only once, followed by the Last message repeated n times.
message. The parameter of this option specifies the number of seconds syslog-ng waits for identical messages.

tcp-keepalive-intvl()
number [seconds]Type:
0Default:

Description: Specifies the interval (number of seconds) between subsequential keepalive probes, regardless of the
traffic exchanged in the connection. This option is equivalent to /proc/sys/net/ipv4/tcp_keepalive_intvl.
The default value is 0, which means using the kernel default.

Warning
The tcp-keepalive-time(), tcp-keepalive-probes(), and tcp-keepalive-intvl() options only work on
platforms which support the TCP_KEEPCNT, TCP_KEEPIDLE,and TCP_KEEPINTVL setsockopts. Currently, this is Linux.

A connection that has no traffic is closed after tcp-keepalive-time() + tcp-keepalive-intvl() *
tcp-keepalive-probes() seconds.

Available in syslog-ng OSE version 3.4 and later.

165www.balabit.com

tcp(), tcp6(), udp(), and udp6() destination options

tcp-keepalive-probes()
numberType:
0Default:

Description: Specifies the number of unacknowledged probes to send before considering the connection dead.
This option is equivalent to /proc/sys/net/ipv4/tcp_keepalive_probes. The default value is 0, which
means using the kernel default.

Warning
The tcp-keepalive-time(), tcp-keepalive-probes(), and tcp-keepalive-intvl() options only work on
platforms which support the TCP_KEEPCNT, TCP_KEEPIDLE,and TCP_KEEPINTVL setsockopts. Currently, this is Linux.

A connection that has no traffic is closed after tcp-keepalive-time() + tcp-keepalive-intvl() *
tcp-keepalive-probes() seconds.

Available in syslog-ng OSE version 3.4 and later.

tcp-keepalive-time()
number [seconds]Type:
0Default:

Description: Specifies the interval (in seconds) between the last data packet sent and the first keepalive probe.
This option is equivalent to /proc/sys/net/ipv4/tcp_keepalive_time. The default value is 0, which
means using the kernel default.

Warning
The tcp-keepalive-time(), tcp-keepalive-probes(), and tcp-keepalive-intvl() options only work on
platforms which support the TCP_KEEPCNT, TCP_KEEPIDLE,and TCP_KEEPINTVL setsockopts. Currently, this is Linux.

A connection that has no traffic is closed after tcp-keepalive-time() + tcp-keepalive-intvl() *
tcp-keepalive-probes() seconds.

Available in syslog-ng OSE version 3.4 and later.

template()
stringType:
A format conforming to the default logfile format.Default:

Description: Specifies a template defining the logformat to be used in the destination. Macros are described in
Section 11.1.5, Macros of syslog-ng OSE (p. 214). Please note that for network destinations it might not be appropriate
to change the template as it changes the on-wire format of the syslog protocol which might not be tolerated by
stock syslog receivers (like syslogd or syslog-ng itself). For network destinations make sure the receiver can cope
with the custom format defined.

166www.balabit.com

tcp(), tcp6(), udp(), and udp6() destination options

template_escape()
yes or noType:
noDefault:

Description: Turns on escaping for the ', ", and backspace characters in templated output files. This is useful for
generating SQL statements and quoting string contents so that parts of the log message are not interpreted as
commands to the SQL server.

throttle()
numberType:
0Default:

Description: Sets the maximum number of messages sent to the destination per second. Use this output-rate-limiting
functionality only when using large enough buffers as well to avoid the risk of losing messages. Specifying 0 or a
lower value sets the output limit to unlimited.

time_zone()
timezone in +/-HH:MM formatType:
unspecifiedDefault:

Description: Convert timestamps to the timezone specified by this option. If this option is not set then the original
timezone information in the message is used.

tls()
tls optionsType:
n/aDefault:

Description: This option sets various options related to TLS encryption, for example, key/certificate files and
trusted CA locations. TLS can be used only with tcp-based transport protocols. For details, see Section 10.4, TLS
options (p. 208).

ts_format()
rfc3164, bsd, rfc3339, isoType:
Use the global option (which defaults to rfc3164)Default:

Description: Override the global timestamp format (set in the global ts_format() parameter) for the specific
destination. For details, see Section ts_format() (p. 200).

7.11. Sending messages to UNIX domain sockets

The unix-stream() and unix-dgram() drivers send messages to a UNIX domain socket in either SOCK_STREAM
or SOCK_DGRAM mode.

167www.balabit.com

Sending messages to UNIX domain sockets

Both drivers have a single required argument specifying the name of the socket to connect to. For the list of available
optional parameters, see Section 7.11.1, unix-stream() and unix-dgram() destination options (p. 168).

Declaration:
unix-stream(filename [options]);
unix-dgram(filename [options]);

Example 7.19. Using the unix-stream() driver

destination d_unix_stream { unix-stream("/var/run/logs"); };

7.11.1. unix-stream() and unix-dgram() destination options

These drivers send messages to a unix socket in either SOCK_STREAM or SOCK_DGRAMmode. The unix-stream()
and unix-dgram() destinations have the following options:

flags()
no_multi_line, syslog-protocolType:
empty setDefault:

Description: Flags influence the behavior of the destination driver.

■ no-multi-line: The no-multi-line flag disables line-breaking in the messages; the entire message is
converted to a single line.

■ syslog-protocol: The syslog-protocol flag instructs the driver to format the messages according to the
new IETF syslog protocol standard (RFC5424), but without the frame header. If this flag is enabled,
macros used for the message have effect only for the text of the message, the message header is formatted
to the new standard. Note that this flag is not needed for the syslog driver, and that the syslog driver
automatically adds the frame header to the messages.

flush_lines()
numberType:
Use global setting.Default:

Description: Specifies how many lines are sent to a destination at a time. The syslog-ng OSE application waits for
this number of lines to accumulate and sends them off in a single batch. Setting this number high increases throughput
as fully filled frames are sent to the destination, but also increases message latency. The latency can be limited by
the use of the flush-timeout option.

flush_timeout() (DEPRECATED)
time in millisecondsType:
Use global setting.Default:

168www.balabit.com

unix-stream() and unix-dgram() destination options

Description: This is a deprecated option. Specifies the time syslog-ng waits for lines to accumulate in its output
buffer. For details, see the flush_lines option.

frac_digits()
numberType:
Value of the global option (which defaults to 0)Default:

Description: The syslog-ng application can store fractions of a second in the timestamps according to the ISO8601
format. The frac_digits() parameter specifies the number of digits stored. The digits storing the fractions are
padded by zeros if the original timestamp of the message specifies only seconds. Fractions can always be stored
for the time the message was received. Note that syslog-ng can add the fractions to non-ISO8601 timestamps as
well.

log_fifo_size()
numberType:
Use global setting.Default:

Description: The number of messages that the output queue can store.

keep-alive()
yes or noType:
yesDefault:

Description: Specifies whether connections to destinations should be closed when syslog-ng is reloaded. Note
that this applies to the client (destination) side of the syslog-ng connections, server-side (source) connections are
always reopened after receiving a HUP signal unless the keep-alive option is enabled for the source.

so_broadcast()
yes or noType:
noDefault:

Description: This option controls the SO_BROADCAST socket option required to make syslog-ng send messages
to a broadcast address. For details, see the socket(7) manual page.

so_keepalive()
yes or noType:
noDefault:

Description: Enables keep-alive messages, keeping the socket open. This only effects TCP and UNIX-stream
sockets. For details, see the socket(7) manual page.

169www.balabit.com

unix-stream() and unix-dgram() destination options

mark_mode()
internal | dst-idle | host-idle | periodical | none | globalAccepted values:
internal for pipe, program drivers

none for file, unix-dgram, unix-stream drivers

global for syslog, tcp, udp destinations

host-idle for global option

Default:

Description:The mark-mode() option can be set for the following destination drivers: file(), program(),
unix_dgram(), unix_stream(), udp(), udp6(), tcp(), tcp6(), pipe(), syslog() and in global option.

■ internal: When internal mark mode is selected, internal source should be placed in the log path as
this mode does not generate mark by itself at the destination. This mode only yelds the mark messages
from internal source. This is the mode as syslog-ng OSE 3.3 worked. MARK will be generated by internal
source if there was NO traffic on local sources:
file(), pipe(), unix-stream(), unix-dgram(), program()

■ dst-idle: Sends mark signal if there was NO traffic on destination drivers. Mark signal from internal
source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ host-idle: Sends mark signal if there was NO local message on destination drivers. For example
mark is generated even if messages were received from tcp. Mark signal from internal source will be
dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ periodical: Sends mark signal perodically, regardless of traffic on destination driver. Mark signal
from internal source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ none: Destination driver drops all MARK messages. If an explicit mark-mode() is not given to the drivers
where none is the default value, then none will be used.

■ global: Destination driver uses the global mark-mode setting. The syslog-ng interprets syntax error
if the global mark-mode is global.

Note
In case of dst-idle, host-idle and periodical; MARK message will not be written in the destination, if it is not open
yet.

Available in syslog-ng OSE 3.4 and later.

170www.balabit.com

unix-stream() and unix-dgram() destination options

so_rcvbuf()
numberType:
0Default:

Description: Specifies the size of the socket receive buffer in bytes. For details, see the socket(7) manual page.

so_sndbuf()
numberType:
0Default:

Description:Specifies the size of the socket send buffer in bytes. For details, see the socket(7) manual page.

suppress()
secondsType:
0 (disabled)Default:

Description: If several identical log messages would be sent to the destination without any other messages between
the identical messages (for example, an application repeated an error message ten times), syslog-ng can suppress
the repeated messages and send the message only once, followed by the Last message repeated n times.
message. The parameter of this option specifies the number of seconds syslog-ng waits for identical messages.

template()
stringType:
A format conforming to the default logfile format.Default:

Description: Specifies a template defining the logformat to be used in the destination. Macros are described in
Section 11.1.5, Macros of syslog-ng OSE (p. 214). Please note that for network destinations it might not be appropriate
to change the template as it changes the on-wire format of the syslog protocol which might not be tolerated by
stock syslog receivers (like syslogd or syslog-ng itself). For network destinations make sure the receiver can cope
with the custom format defined.

template_escape()
yes or noType:
noDefault:

Description: Turns on escaping for the ', ", and backspace characters in templated output files. This is useful for
generating SQL statements and quoting string contents so that parts of the log message are not interpreted as
commands to the SQL server.

throttle()
numberType:
0Default:

171www.balabit.com

unix-stream() and unix-dgram() destination options

Description: Sets the maximum number of messages sent to the destination per second. Use this output-rate-limiting
functionality only when using large enough buffers as well to avoid the risk of losing messages. Specifying 0 or a
lower value sets the output limit to unlimited.

time_zone()
timezone in +/-HH:MM formatType:
unspecifiedDefault:

Description: Convert timestamps to the timezone specified by this option. If this option is not set then the original
timezone information in the message is used.

ts_format()
rfc3164, bsd, rfc3339, isoType:
Use the global option (which defaults to rfc3164)Default:

Description: Override the global timestamp format (set in the global ts_format() parameter) for the specific
destination. For details, see Section ts_format() (p. 200).

7.12. Sending messages to a user terminal — usertty() destination

This driver writes messages to the terminal of a logged-in user.

The usertty() driver has a single required argument, specifying a username who should receive a copy of matching
messages. Use the asterisk * to specify every user currently logged in to the system.

Declaration:
usertty(username);

The usertty() does not have any further options nor does it support templates.

Example 7.20. Using the usertty() driver

destination d_usertty { usertty("root"); };

172www.balabit.com

Sending messages to a user terminal — usertty() destination

Chapter 8. Routing messages: log paths and filters

8.1. Log paths

Log paths determine what happens with the incoming log messages. Messages coming from the sources listed in
the log statement and matching all the filters are sent to the listed destinations.

To define a log path, add a log statement to the syslog-ng configuration file using the following syntax:

log {
source(s1); source(s2); ...
optional_element(filter1|parser1|rewrite1);...
optional_element(filter2|parser2|rewrite2);...
destination(d1); destination(d2); ...
flags(flag1[, flag2...]);
};

Warning
Log statements are processed in the order they appear in the configuration file, thus the order of log paths may influence
what happens to a message, especially when using filters and log flags.

Example 8.1. A simple log statement
The following log statement sends all messages arriving to the localhost to a remote server.

source s_localhost { tcp(ip(127.0.0.1) port(1999)); };
destination d_tcp { tcp("10.1.2.3" port(1999); localport(999)); };
log { source(s_localhost); destination(d_tcp); };

All matching log statements are processed by default, and the messages are sent to every matching destination by
default. So a single log message might be sent to the same destination several times, provided the destination is
listed in several log statements, and it can be also sent to several different destinations.

This default behavior can be changed using the flags() parameter. Flags apply to individual log paths; they are
not global options. The following flags available in syslog-ng:

■ final: Do not send the messages processed by this log path to any further destination.

■ fallback: Process messages that were not processed by other log paths.

■ catchall: Process every message, regardless of its source or if it was already processed by other log paths.

■ flow-control: Stop reading messages from the source if the destination cannot accept them. For details,
see Section 8.2, Managing incoming and outgoing messages with flow-control (p. 178).

For details on the individual flags, see Section 8.1.3, Log path flags (p. 177). The effect and use of the flow-control
flag is detailed in Section 8.2, Managing incoming and outgoing messages with flow-control (p. 178).

173www.balabit.com

Log paths

8.1.1. Embedded log statements

Starting from version 3.0, syslog-ng can handle embedded log statements (also called log pipes). Embedded log
statements are useful for creating complex, multi-level log paths with several destinations and use filters, parsers,
and rewrite rules.

For example, if you want to filter your incoming messages based on the facility parameter, and then use further
filters to send messages arriving from different hosts to different destinations, you would use embedded log
statements.

Figure 8.1. Embedded log statement

Embedded log statements include sources — and usually filters, parsers, rewrite rules, or destinations — and other
log statements that can include filters, parsers, rewrite rules, and destinations. The following rules apply to embedded
log statements:

■ Only the beginning (also called top-level) log statement can include sources.

■ Embedded log statements can include multiple log statements on the same level (that is, a top-level log
statement can include two or more log statements).

■ Embedded log statements can include several levels of log statements (that is, a top-level log statement
can include a log statement that includes another log statement, and so on).

■ After an embedded log statement, you can write either another log statement, or the flags() option
of the original log statement. You cannot use filters or other configuration objects.

■ Embedded log statements that are on the same level receive the same messages from the higher-level
log statement. For example, if the top-level log statement includes a filter, the lower-level log statements
receive only the messages that pass the filter.

174www.balabit.com

Embedded log statements

Figure 8.2. Embedded log statements

Embedded log filters can be used to optimize the processing of log messages, for example, to re-use the results of
filtering and rewriting operations.

8.1.1.1. Using embedded log statements

Embedded log statements (for details, see Section 8.1.1, Embedded log statements (p. 174)) re-use the results of processing
messages (for example the results of filtering or rewriting) to create complex log paths. Embedded log statements
use the same syntax as regular log statements, but they cannot contain additional sources. To define embedded log
statements, use the following syntax:

log {
source(s1); source(s2); ...

optional_element(filter1|parser1|rewrite1);
optional_element(filter2|parser2|rewrite2);...

destination(d1); destination(d2); ...

#embedded log statement
log

{
optional_element(filter1|parser1|rewrite1);
optional_element(filter2|parser2|rewrite2);
...
destination(d1); destination(d2); ...
#another embedded log statement
log
{

optional_element(filter1|parser1|rewrite1);
optional_element(filter2|parser2|rewrite2);
...
destination(d1); destination(d2); ...};

};
#set flags after the embedded log statements
flags(flag1[, flag2...]);

};

175www.balabit.com

Embedded log statements

Example 8.2. Using embedded log paths
The following log path sends every message to the configured destinations: both the d_file1 and the d_file2 destinations
receive every message of the source.

log { source(s_localhost); destination(d_file1); destination(d_file2); };

The next example is equivalent with the one above, but uses an embedded log statement.

log { source(s_localhost); destination(d_file1);
log {destination(d_file2); };

};

The following example uses two filters:

■ messages coming from the host 192.168.1.1 are sent to the d_file1 destination; and

■ messages coming from the host 192.168.1.1 and containing the string example are sent to the d_file2
destination.

log { source(s_localhost); host(192.168.1.); destination(d_file1);
log {message("example"); destination(d_file2); };

};

The following example collects logs from multiple source groups and uses the source() filter in the embedded log statement
to select messages of the s_network source group.

log { source(s_localhost); source(s_network); destination(d_file1);
log {source(s_network); destination(d_file2); };
};

8.1.2. Junctions and channels

Junctions make it possible to send the messages to different channels, process the messages differently on each
channel, and then join every channel together again. You can define any number of channels in a junction: every
channel receives a copy of every message that reaches the junction. Every channel can process the messages
differently, and at the end of the junction, the processed messages of every channel return to the junction again,
where further processing is possible.

A junction includes one or more channels. A channel usually includes at least one filter, though that is not enforced.
Otherwise, channels are identical to log statements, and can include any kind of objects, for example, parsers, rewrite
rules, destinations, and so on. (For details on using channels, as well as on using channels outside junctions, see
Section 5.5, Using channels in configuration objects (p. 47).)

Note
Certain parsers can also act as filters:

■ The JSON parser automatically discards messages that are not valid JSON messages.

■ The csv-parser() discards invalid messages if the flags(drop-invalid) option is set.

You can also use log-path flags in the channels of the junction. Within the junction, a message is processed by every
channel, in the order the channels appear in the configuration file. Typically if your channels have filters, you also
set the flags(final) option for the channel. However, note that the log-path flags of the channel apply only
within the junction, for example, if you set the final flag for a channel, then the subsequent channels of the
junction will not receive the message, but this does not affect any other log path or junction of the configuration.
The only exception is the flow-control flag: if you enable flow-control in a junction, it affects the entire log
path. For details on log-path flags, see Section 8.1.3, Log path flags (p. 177).

176www.balabit.com

Junctions and channels

junction {
channel { <other-syslog-ng-objects> <log-path-flags>}
channel { <other-syslog-ng-objects> <log-path-flags>}
...
}

Example 8.3. Using junctions
For example, suppose that you have a single network source that receives log messages from different devices, and some
devices send messages that are not RFC-compliant (some routers are notorious for that). To solve this problem in earlier
versions of syslog-ng OSE, you had to create two different network sources using different IP addresses or ports: one that
received the RFC-compliant messages, and one that received the improperly formatted messages (for example, using the
flags(no-parse) option). Using junctions this becomes much more simple: you can use a single network source to receive
every message, then use a junction and two channels. The first channel processes the RFC-compliant messages, the second
everything else. At the end, every message is stored in a single file. The filters used in the example can be host() filters (if
you have a list of the IP addresses of the devices sending non-compliant messages), but that depends on your environment.

log {
source s_network { syslog(ip(10.1.2.3) transport("tcp")); flags(no-parse); };
junction {

channel { filter(f_compliant_hosts); parser { syslog-parser(); }; };
channel { filter(f_noncompliant_hosts); };

};
destination { file("/var/log/messages"); };

};

Since every channel receives every message that reaches the junction, use the flags(final) option in the channels to avoid
the unnecessary processing the messages multiple times:

log {
source s_network { syslog(ip(10.1.2.3) transport("tcp")); flags(no-parse); };
junction {

channel { filter(f_compliant_hosts); parser { syslog-parser(); }; flags(final);
};

channel { filter(f_noncompliant_hosts); flags(final); };
};
destination { file("/var/log/messages"); };

};

Note
Junctions differ from embedded log statements, because embedded log statements are like branches: they split the flow of
messages into separate paths, and the different paths do not meet again. Messages processed on different embedded log
statements cannot be combined together for further processing. However, junctions split the messages to channels, then
combine the channels together.

8.1.3. Log path flags

Flags influence the behavior of syslog-ng, and the way it processes messages. The following flags may be used in
the log paths, as described in Section 8.1, Log paths (p. 173).

DescriptionFlag

This flag means that the source of the message is ignored, only the filters are taken into account when
matching messages. A log statement using the catchall flag processes every message that arrives to
any of the defined sources.

catchall

This flag makes a log statement 'fallback'. Fallback log statements process messages that were not processed
by other, 'non-fallback' log statements.

fallback

177www.balabit.com

Log path flags

DescriptionFlag

This flag means that the processing of log messages processed by the log statement ends here, other log
statements appearing later in the configuration file will not process the messages processed by the log

final

statement labeled as 'final'. Note that this does not necessarily mean that matching messages will be stored
only once, as there can be matching log statements processed prior the current one.

Enables flow-control to the log path, meaning that syslog-ng will stop reading messages from the sources
of this log statement if the destinations are not able to process the messages at the required speed. If

flow-control

disabled, syslog-ng will drop messages if the destination queues are full. If enabled, syslog-ng will only
drop messages if the destination queues/window sizes are improperly sized. For details, see Section 8.2,
Managing incoming and outgoing messages with flow-control (p. 178).

Table 8.1. Log statement flags

Warning
The final, fallback, and catchall flags apply only for the top-level log paths, they have no effect on embedded log
paths.

Example 8.4. Using log path flags
Let's suppose that you have two hosts (myhost_A and myhost_B) that run two applications each (application_A and
application_B), and you collect the log messages to a central syslog-ng server. On the server, you create two log paths:

■ one that processes only the messages sent by myhost_A; and

■ one that processes only the messages sent by application_A.

This means that messages sent by application_A running on myhost_A will be processed by both log paths, and the
messages of application_B running on myhost_B will not be processed at all.

■ If you add the final flag to the first log path, then only this log path will process the messages of myhost_A,
so the second log path will receive only the messages of application_A running on myhost_B.

■ If you create a third log path that includes the fallback flag, it will process the messages not processed by
the first two log paths, in this case, the messages of application_B running on myhost_B.

■ Adding a fourth log path with the catchall flag would process every message received by the syslog-ng server.

log { source(s_localhost); destination(d_file); flags(catchall); };

8.2. Managing incoming and outgoing messages with flow-control

This section describes the internal message-processing model of syslog-ng, as well as the flow-control feature that
can prevent message losses. To use flow-control, the flow-control flag must be enabled for the particular log
path.

The syslog-ng application monitors (polls) the sources defined in its configuration file, periodically checking each
source for messages. When a log message is found in one of the sources, syslog-ng polls every source and reads
the available messages. These messages are processed and put into the output buffer of syslog-ng (also called fifo).
From the output buffer, the operating system sends the messages to the appropriate destinations.

In large-traffic environments many messages can arrive during a single poll loop, therefore syslog-ng reads only a
fixed number of messages from each source. The log_fetch_limit() option specifies the number of messages
read during a poll loop from a single source.

178www.balabit.com

Managing incoming and outgoing messages with flow-control

Figure 8.3. Managing log messages in syslog-ng

Note
The log_fetch_limit() parameter can be set as a global option, or for every source individually.

Every destination has its own output buffer. The output buffer is needed because the destination might not be able
to accept all messages immediately. The log_fifo_size() parameter sets the size of the output buffer. The
output buffer must be larger than the log_fetch_limit() of the sources, to ensure that every message read
during the poll loop fits into the output buffer. If the log path sends messages to a destination from multiple sources,
the output buffer must be large enough to store the incoming messages of every source.

TCP and unix-stream sources can receive the logs from several incoming connections (for example many different
clients or applications). For such sources, syslog-ng reads messages from every connection, thus the
log_fetch_limit() parameter applies individually to every connection of the source.

Figure 8.4. Managing log messages of TCP sources in syslog-ng

The flow-control of syslog-ng introduces a control window to the source that tracks how many messages can
syslog-ng accept from the source. Every message that syslog-ng reads from the source lowers the window size by
one; every message that syslog-ng successfully sends from the output buffer increases the window size by one. If
the window is full (that is, its size decreases to zero), syslog-ng stops reading messages from the source. The initial
size of the control window is by default 1000: the log_fifo_size() must be larger than this value in order for
flow-control to have any effect. If a source accepts messages from multiple connections, all messages use the same
control window.

Note
Starting with syslog-ng OSE version 3.3, if the source can handle multiple connections (for example, tcp()), the size of the
control window is divided by the value of the max_connections() parameter and this smaller control window is applied
to each connection of the source.

179www.balabit.com

Managing incoming and outgoing messages with flow-control

When flow-control is used, every source has its own control window. As a worst-case situation, the output buffer
of the destination must be set to accommodate all messages of every control window, that is, the log_fifo_size()
of the destination must be greater than number_of_sources*log_iw_size(). This applies to every source
that sends logs to the particular destination. Thus if two sources having several connections and heavy traffic send
logs to the same destination, the control window of both sources must fit into the output buffer of the destination.
Otherwise, syslog-ng does not activate the flow-control, and messages may be lost.

The syslog-ng application handles outgoing messages the following way:

Figure 8.5. Handling outgoing messages in syslog-ng OSE

■ Output queue: Messages from the output queue are sent to the target syslog-ng server. The syslog-ng
application puts the outgoing messages directly into the output queue, unless the output queue is full.
The output queue can hold 64 messages, this is a fixed value and cannot be modified.

■ Overflow queue: If the output queue is full, syslog-ng puts the outgoing messages into the overflow queue
of the destination. (The overflow queue is identical to the output buffer used by other destinations.)
The log_fifo_size() parameter specifies the number of messages stored in the overflow queue.
For details on sizing the log_fifo_size() parameter, see Section 8.2, Managing incoming and outgoing
messages with flow-control (p. 178).

There are two types of flow-control: Hard flow-control and soft flow-control.

■ Soft flow-control: In case of soft flow-control there is no message lost if the destination can accept messages,
but it is possible to lose messages if it cannot accept messages (for example non-writeable file destination,

180www.balabit.com

Managing incoming and outgoing messages with flow-control

or the disk becomes full), and all buffers are full. Soft flow-control cannot be configured, it is automatically
available for file and logstore destinations.

Example 8.5. Soft flow-control

source s_file {file("/tmp/input_file.log");};
destination d_file {file("/tmp/output_file.log");};
destination d_tcp { tcp("127.0.0.1" port(2222) log_fifo_size(1000)); };
log{ source(s_file); destination(d_file); destination(d_tcp);};

Warning
Hazard of data loss! For destinations other than file and logstore, soft flow-control is not available. Thus, it is
possible to lose log messages on those destinations. To avoid data loss on those destinations, use hard
flow-control.

■ Hard flow-control: In case of hard flow-control there is no message lost. To use hard flow-control, enable
the flow_control flag in the logpath. Hard flow-control is available for all destinations.

Example 8.6. Hard flow-control

source s_file {file("/tmp/input_file.log");};
destination d_file {file("/tmp/output_file.log");};
destination d_tcp { tcp("127.0.0.1" port(2222) log_fifo_size(1000)); };
log{ source(s_file); destination(d_file); destination(d_tcp)
flags(flow_control);};

8.2.1. Flow-control and multiple destinations

Using flow-control on a source has an important side-effect if the messages of the source are sent to multiple
destinations. If flow-control is in use and one of the destinations cannot accept the messages, the other destinations
do not receive any messages either, because syslog-ng stops reading the source. For example, if messages from a
source are sent to a remote server and also stored locally in a file, and the network connection to the server becomes
unavailable, neither the remote server nor the local file will receive any messages.

Note
Creating separate log paths for the destinations that use the same flow-controlled source does not avoid the problem.

8.2.2. Configuring flow-control

For details on how flow-control works, see Section 8.2, Managing incoming and outgoing messages with flow-control (p. 178).
The summary of the main points is as follows:

■ The syslog-ng application normally reads a maximum of log_fetch_limit() number of messages
from a source.

181www.balabit.com

Flow-control and multiple destinations

■ From TCP and unix-stream sources, syslog-ng reads a maximum of log_fetch_limit() from every
connection of the source. The number of connections to the source is set using the
max_connections() parameter.

■ Every destination has an output buffer (log_fifo_size()).

■ Flow-control uses a control window to determine if there is free space in the output buffer for new
messages. Every source has its own control window; log_iw_size() parameter sets the size of the
control window.

■ When a source accepts multiple connections, the size of the control window is divided by the value of
the max_connections() parameter and this smaller control window is applied to each connection
of the source.

■ The output buffer must be larger than the control window of every source that logs to the destination.

■ If the control window is full, syslog-ng stops reading messages from the source until some messages are
successfully sent to the destination.

■ If the output buffer becomes full, and flow-control is not used, messages may be lost.

Note
If you modify the max_connections() or the log_fetch_limit() parameter, do not forget to adjust the
log_iw_size() and log_fifo_size() parameters accordingly.

Example 8.7. Sizing parameters for flow-control
Suppose that syslog-ng has a source that must accept up to 300 parallel connections. Such situation can arise when a network
source receives connections from many clients, or if many applications log to the same socket. Therefore, set the
max_connections() parameter of the source to 300. However, the log_fetch_limit() (default value: 10) parameter
applies to every connection of the source individually, while the log_iw_size() (default value: 1000) parameter applies to
the source. In a worst-case scenario, the destination does not accept any messages, while all 300 connections send at least
log_fetch_limit() number of messages to the source during every poll loop. Therefore, the control window must
accommodate at least max_connections()*log_fetch_limit() messages to be able to read every incoming message
of a poll loop. In the current example this means that (log_iw_size() should be greater than 300*10=3000. If the control
window is smaller than this value, the control window might fill up with messages from the first connections — causing
syslog-ng to read only one message of the last connections in every poll loop.

The output buffer of the destination must accommodate at least log_iw_size() messages, but use a greater value: in the
current example 3000*10=30000 messages. That way all incoming messages of ten poll loops fit in the output buffer. If the
output buffer is full, syslog-ng does not read any messages from the source until some messages are successfully sent to the
destination.

source s_localhost {
tcp(ip(127.0.0.1) port(1999) max-connections(300)); };

destination d_tcp {
tcp("10.1.2.3" port(1999); localport(999)); log_fifo_size(30000); };

log { source(s_localhost); destination(d_tcp); flags(flow-control); };

If other sources send messages to this destination, than the output buffer must be further increased. For example, if a network
host with maximum 100 connections also logs into the destination, than increase the log_fifo_size() by 10000.

source s_localhost {
tcp(ip(127.0.0.1) port(1999) max-connections(300)); };

source s_tcp {
tcp(ip(192.168.1.5) port(1999) max-connections(100)); };

destination d_tcp {
tcp("10.1.2.3" port(1999); localport(999)); log_fifo_size(40000); };

log { source(s_localhost); destination(d_tcp); flags(flow-control); };

182www.balabit.com

Configuring flow-control

For details, see also Section 17.2, Handling lots of parallel connections (p. 270).

8.3. Filters

The following sections describe how to select and filter log messages.

■ Section 8.3.1, Using filters (p. 183) describes how to configure and use filters.

■ Section 8.3.2, Combining filters with boolean operators (p. 183) shows how to create complex filters using boolean
operators.

■ Section 8.3.3, Comparing macro values in filters (p. 184) explains how to evaluate macros in filters.

■ Section 8.3.4, Using wildcards, special characters, and regular expressions in filters (p. 185) provides tips on using
regular expressions.

■ Section 8.3.5, Tagging messages (p. 186) explains how to tag messages and how to filter on the tags.

■ Section 8.3.6, Filter functions (p. 186) is a detailed description of the filter functions available in syslog-ng
OSE.

8.3.1. Using filters

Filters perform log routing within syslog-ng: a message passes the filter if the filter expression is true for the particular
message. If a log statement includes filters, the messages are sent to the destinations only if they pass all filters of
the log path. For example, a filter can select only the messages originating from a particular host. Complex filters
can be created using filter functions and logical boolean expressions.

To define a filter, add a filter statement to the syslog-ng configuration file using the following syntax:

filter <identifier> { <filter_type>("<filter_expression>"); };

Example 8.8. A simple filter statement
The following filter statement selects the messages that contain the word deny and come from the host example.

filter demo_filter { host("example") and match("deny" value("MESSAGE")) };

For the filter to have effect, include it in a log statement:

log demo_filteredlog {
source(s1);
filter(demo_filter);
destination(d1);};

8.3.2. Combining filters with boolean operators

When a log statement includes multiple filter statements, syslog-ng sends a message to the destination only if all
filters are true for the message. In other words, the filters are connected with the logical AND operator. In the
following example, no message arrives to the destination, because the filters are exclusive (the hostname of a client
cannot be example1 and example2 at the same time):

filter demo_filter1 { host("example1"); };
filter demo_filter2 { host("example2"); };
log demo_filteredlog {

source(s1); source(s2);

183www.balabit.com

Filters

filter(demo_filter1); filter(demo_filter2);
destination(d1); destination(d2); };

To select the messages that come from either host example1 or example2, use a single filter expression:

filter demo_filter { host("example1") or host("example2"); };
log demo_filteredlog {

source(s1); source(s2);
filter(demo_filter);
destination(d1); destination(d2); };

Use the not operator to invert filters, for example, to select the messages that were not sent by host example1:

filter demo_filter { not host("example1"); };

However, to select the messages that were not sent by host example1 or example2, you have to use the and
operator (that's how boolean logic works):

filter demo_filter { not host("example1") and not host("example2"); };

Alternatively, you can use parentheses to avoid this confusion:

filter demo_filter { not (host("example1") or host("example2")); };

For a complete description on filter functions, see Section 8.3.6, Filter functions (p. 186).

The following filter statement selects the messages that contain the word deny and come from the host example.

filter demo_filter { host("example") and match("deny" value("MESSAGE")); };

The value() parameter of the match function limits the scope of the function to the text part of the message
(that is, the part returned by the ${MESSAGE} macro). For details on using the match() filter function, see Section
match() (p. 189).

Tip
Filters are often used together with log path flags. For details, see Section 8.1.3, Log path flags (p. 177).

8.3.3. Comparing macro values in filters

Starting with syslog-ng OSE version 3.2, it is also possible to compare macro values and templates as numerical
and string values. String comparison is alphabetical: it determines if a string is alphabetically greater or equal to
another string. Use the following syntax to compare macro values or templates. For details on macros and templates,
see Section 11.1, Customizing message format (p. 211).

filter <filter-id>
{"<macro-or-template>" operator "<value-or-macro-or-template>"};

184www.balabit.com

Comparing macro values in filters

Example 8.9. Comparing macro values in filters
The following expression selects log messages containing a PID (that is, ${PID} macro is not empty):

filter f_pid {"${PID}" !=""};

The following expression accomplishes the same, but uses a template as the left argument of the operator and compares the
values as strings:

filter f_pid {"${HOST}${PID}" eq "${HOST}"};

The following example selects messages with priority level 4 or higher.

filter f_level {"${LEVEL_NUM}" > "5"};

Note that:

■ The macro or template must be enclosed in double-quotes.

■ The $ character must be used before macros.

■ Using comparator operators can be equivalent to using filter functions, but is somewhat slower. For
example, using "${HOST}" eq "myhost" is equivalent to using host("myhost" type(string)).

■ You can use any macro in the expression, including user-defined macros from parsers and results of
pattern database classifications.

■ The results of filter functions are boolean values, so they cannot be compared to other values.

■ You can use boolean operators to combine comparison expressions.

The following operators are available:

MeaningString operatorNumerical operator

Equalseq==

Not equal tone!=

Greater thangt>

Less thanlt<

Greater than or equalge>=

Less than or equalle=<

Table 8.2. Numerical and string comparison operators

8.3.4. Using wildcards, special characters, and regular expressions in filters

The host(), match(), and program() filter functions accept regular expressions as parameters. The exact type
of the regular expression to use can be specified with the type() option. By default, syslog-ng OSE uses POSIX
regular expressions.

In regular expressions, the asterisk (*) character means 0, 1 or any number of the previous expression. For example,
in the f*ilter expression the asterisk means 0 or more f letters. This expression matches for the following strings:
ilter, filter, ffilter, and so on. To achieve the wildcard functionality commonly represented by the asterisk
character in other applications, use .* in your expressions, for example f.*ilter.

Alternatively, if you do not need regular expressions, only wildcards, use type(glob) in your filter:

185www.balabit.com

Using wildcards, special characters, and regular expressions in filters

Example 8.10. Filtering with widcards
The following filter matches on hostnames starting with the myhost string, for example, on myhost-1, myhost-2, and so
on.

filter f_wildcard {host("myhost*" type(glob));};

For details on using regular expressions in syslog-ng OSE, see Section 8.3.4, Using wildcards, special characters, and regular
expressions in filters (p. 185).

To filter for special control characters like the carriage return (CR), use the \r escape prefix in syslog-ng OSE
version 3.0 and 3.1. In syslog-ng OSE 3.2 and later, you can also use the \x escape prefix and the ASCII code of
the character. For example, to filter on carriage returns, use the following filter:

filter f_carriage_return {match("\x0d" value ("MESSAGE"));};

8.3.5. Tagging messages

Starting with syslog-ng 3.1, it is also possible to label the messages with custom tags. Tags are simple labels, identified
by their names, which must be unique. Currently syslog-ng can tag a message at two different places:

■ at the source when the message is received; and

■ when the message matches a pattern in the pattern database. For details on using the pattern database,
see Section 13.2, Using pattern databases (p. 243), for details on creating tags in the pattern database, see
Section 13.5.3, The syslog-ng pattern database format (p. 253).

■ Tags can be also added and deleted using rewrite rules. For details, see Section 11.2.5, Adding and deleting
tags (p. 229).

When syslog-ng receives a message, it automatically adds the .source.<id_of_the_source_statement>
tag to the message. Use the tags() option of the source to add custom tags, and the tags() option of the filters
to select only specific messages.

Note

■ Tagging messages and also filtering on the tags is very fast, much faster then other types of filters.

■ Tags are available locally, that is, if you add tags to a message on the client, these tags will not be available on
the server.

■ To include the tags in the message, use the ${TAGS} macro in a template. Alternatively, if you are using the
IETF-syslog message format, you can include the ${TAGS} macro in the .SDATA.meta part of the message.
Note that the ${TAGS} macro is available only in syslog-ng OSE 3.1.1 and later.

For an example on tagging, see Example 8.11, Adding tags and filtering messages with tags (p. 190).

8.3.6. Filter functions

The following functions may be used in the filter statement, as described in Section 8.3, Filters (p. 183).

DescriptionName

Filter messages based on the sending facility.facility()

186www.balabit.com

Tagging messages

DescriptionName

Call another filter function.filter()

Filter messages based on the sending host.host()

Filter messages based on their priority.level() or priority()

Use a regular expression to filter messages based on a
specified header or content field.

match()

Use a regular expression to filter messages based their
content.

message()

Filter messages based on the IP address of the sending
host.

netmask()

Filter messages based on the sending application.program()

Select messages of the specified syslog-ng OSE source
statement.

source()

Select messages having the specified tag.tags()

Table 8.3. Filter functions available in syslog-ng OSE

facility()
facility(facility[,facility])Synopsis:

Description: Match messages having one of the listed facility code. An alternate syntax permits the use an arbitrary
facility codes.

The facility() filter accepts both the name and the numerical code of the facility or the importance level.

Messages sent by a range of facilities can also be selected. Note that this is only possible when using the name of
the facilities. It is not possible to select ranges the numerical codes of the facilities.

facility(local0..local5)

The syslog-ng application recognizes the following facilities: (Note that some of these facilities are available only
on specific platforms.)

FacilityFacility nameNumerical Code

kernel messageskern0

user-level messagesuser1

mail systemmail2

system daemonsdaemon3

security/authorization messagesauth4

messages generated internally by
syslogd

syslog5

line printer subsystemlpr6

network news subsystemnews7

187www.balabit.com

Filter functions

FacilityFacility nameNumerical Code

UUCP subsystemuucp8

clock daemoncron9

security/authorization messagesauthpriv10

FTP daemonftp11

NTP subsystemntp12

log auditsecurity13

log alertconsole14

clock daemonsolaris-cron15

locally used facilities (local0-local7)local0..local716-23

Table 8.4. syslog Message Facilities recognized by the facility() filter

facility()
facility(<numeric facility code>)Synopsis:

Description: An alternate syntax for facility permitting the use of an arbitrary facility code. Facility codes 0-23
are predefined and can be referenced by their usual name. Facility codes above 24 are not defined but can be used
by this alternate syntax.

filter()
filter(filtername)Synopsis:

Description: Call another filter rule and evaluate its value.

host()
host(regexp)Synopsis:

Description: Match messages by using a regular expression against the hostname field of log messages.

level() or priority()
level(pri[,pri1..pri2[,pri3]])Synopsis:

Description: Match messages based on priority.

The level() filter accepts the following levels: emerg, alert, crit, err, warning, notice, info, debug.

The level() filter can select messages corresponding to a single importance level, or a level-range. To select
messages of a specific level, use the name of the level as a filter parameter, for example use the following to select
warning messages:

level(warning)

188www.balabit.com

Filter functions

To select a range of levels, include the beginning and the ending level in the filter, separated with two dots (..).
For example, to select every message of error or higher level, use the following filter:

level(err..emerg)

match()
match(regexp)Synopsis:

Description: Match a regular expression to the headers and the message itself (that is, the values returned by the
MSGHDR and MSG macros). Note that in syslog-ng version 2.1 and earlier, the match() filter was applied only to
the text of the message, excluding the headers. This functionality has been moved to the message() filter.

To limit the scope of the match to a specific part of the message (identified with a macro), use the match(regexp
value("MACRO")) syntax. Do not include the $ sign in the parameter of the value() option.

The value() parameter accepts both built-in macros and user-defined ones created with a parser or using a pattern
database. For details on macros and parsers, see Section 11.1.2, Templates and macros (p. 212), Section 12.2, Parsing
messages (p. 234), and Section 13.2.1, Using parser results in filters and templates (p. 244).

message()
message(regexp)Synopsis:

Description: Match a regular expression to the text of the log message, excluding the headers (that is, the value
returned by the MSG macros). Note that in syslog-ng version 2.1 and earlier, this functionality was performed by
the match() filter.

netmask()
netmask(ip/mask)Synopsis:

Description: Select only messages sent by a host whose IP address belongs to the specified IP subnet. Note that
this filter checks the IP address of the last-hop relay (the host that actually sent the message to syslog-ng), not the
contents of the HOST field of the message.

program()
program(regexp)Synopsis:

Description: Match messages by using a regular expression against the program name field of log messages.

source()
source idSynopsis:

Description: Select messages of a source statement. This filter can be used in embedded log statements if the
parent statement contains multiple source groups — only messages originating from the selected source group are
sent to the destination of the embedded log statement.

189www.balabit.com

Filter functions

tags()
tagSynopsis:

Description: Select messages labeled with the specified tag. Every message automatically has the tag of its source
in .source.<id_of_the_source_statement> format. This option is available only in syslog-ng 3.1 and later.

Example 8.11. Adding tags and filtering messages with tags

source s_tcp {
tcp(ip(192.168.1.1) port(1514) tags("tcp", "router"));
};

Use the tags() option of the filters to select only specific messages:

filter f_tcp {
tags(".source.s_tcp");

};

filter f_router {
tags("router");

};

Note
Starting with version 3.2, syslog-ng OSE automatically adds the class of the message as a tag using the
.classifier.<message-class> format. For example, messages classified as "system" receive the .classifier.system
tag. Use the tags() filter function to select messages of a specific class.

filter f_tag_filter {tags(".classifier.system");};

8.4. Dropping messages

To skip the processing of a message without sending it to a destination, create a log statement with the appropriate
filters, but do not include any destination in the statement, and use the final flag.

Example 8.12. Skipping messages
The following log statement drops all debug level messages without any further processing.

filter demo_debugfilter { level(debug); };
log { source(s_all); filter(demo_debugfilter); flags(final); };

190www.balabit.com

Dropping messages

Chapter 9. Global options of syslog-ng OSE

9.1. Configuring global syslog-ng options

The syslog-ng application has a number of global options governing DNS usage, the timestamp format used, and
other general points. Each option may have parameters, similarly to driver specifications. To set global options,
add an option statement to the syslog-ng configuration file using the following syntax:

options { option1(params); option2(params); ... };

Example 9.1. Using global options
To disable domain name resolving, add the following line to the syslog-ng configuration file:

options { use_dns(no); };

For a detailed list of the available options, see Section 9.2, Global options (p. 191). For important global options and
recommendations on their use, see Chapter 17, Best practices and examples (p. 270).

9.2. Global options

The following options can be specified in the options statement, as described in Section 9.1, Configuring global syslog-ng
options (p. 191).

bad_hostname()
regular expressionAccepted values:
noDefault:

Description: A regexp containing hostnames which should not be handled as hostnames.

chain_hostnames()
yes | noAccepted values:
noDefault:

Description: Enable or disable the chained hostname format. If the log message is forwarded to the logserver via
a relay, and the chain_hostnames() option is enabled, the relay adds its own hostname to the hostname of the
client, separated with a / character. For example, consider a client-relay-server scenario with the following hostnames:
client-hostname, relay-hostname, server-hostname. The hostname of the log message received by the
server will look like: client-hostname/relay-hostname. If the client sends a hostname in the message that
is different from its real hostname (as resolved from DNS), the relay can add the resolved hostname to the message,
result ing in two different cl ient hostnames in the message, for examle,
client-hostname-from-the-message/client-hostname-resolved-on-the-relay/relay-hostname.

191www.balabit.com

Configuring global syslog-ng options

check_hostname()
yes | noAccepted values:
noDefault:

Description: Enable or disable checking whether the hostname contains valid characters.

create_dirs()
yes | noAccepted values:
noDefault:

Description: Enable or disable directory creation for destination files.

dir_group()
groupidAccepted values:
rootDefault:

Description: The default group for newly created directories.

dir_owner()
useridAccepted values:
rootDefault:

Description: The default owner of newly created directories.

dir_perm()
permission valueAccepted values:
0700Default:

Description: The permission mask of directories created by syslog-ng. Log directories are only created if a file
after macro expansion refers to a non-existing directory, and directory creation is enabled (see also the
create_dirs() option). For octal numbers prefix the number with 0, for example use 0755 for rwxr-xr-x.

To preserve the original properties of an existing directory, use the option without specifying an attribute:
dir_perm(). Note that when creating a new directory without specifying attributes for dir_perm(), the default
permission of the directories is masked with the umask of the parent process (typically 0022).

dns_cache()
yes | noAccepted values:
yesDefault:

Description: Enable or disable DNS cache usage.

192www.balabit.com

check_hostname()

dns_cache_expire()
numberAccepted values:
3600Default:

Description: Number of seconds while a successful lookup is cached.

dns_cache_expire_failed()
numberAccepted values:
60Default:

Description: Number of seconds while a failed lookup is cached.

dns_cache_hosts()
filenameAccepted values:
unsetDefault:

Description: Name of a file in /etc/hosts format that contains static IP->hostname mappings. Use this option
to resolve hostnames locally without using a DNS. Note that any change to this file triggers a reload in syslog-ng
and is instantaneous.

dns_cache_size()
numberAccepted values:
1007Default:

Description: Number of hostnames in the DNS cache.

file-template()
time offset (for example: +03:00)Accepted values:
local timezoneDefault:

Description: Specifies a template that file-like destinations use by default. For example:

template t_isostamp { template("$ISODATE $HOST $MSGHDR$MSG\n"); };

options { file-template(t_isostamp); };

flush_lines()
numberAccepted values:
0Default:

Description: Specifies how many lines are flushed to a destination at a time. Syslog-ng waits for this number of
lines to accumulate and sends them off in a single batch. Setting this number high increases throughput as fully

193www.balabit.com

dns_cache_expire()

filled frames are sent to the network, but also increases message latency. The latency can be limited by the use of
the flush_timeout option.

flush_timeout()
time in millisecondsAccepted values:
10000Default:

Description: Specifies the time syslog-ng waits for lines to accumulate in its output buffer. For more information,
see the flush_lines() option.

frac_digits()
numberType:
Value of the global option (which defaults to 0)Default:

Description: The syslog-ng application can store fractions of a second in the timestamps according to the ISO8601
format. The frac_digits() parameter specifies the number of digits stored. The digits storing the fractions are
padded by zeros if the original timestamp of the message specifies only seconds. Fractions can always be stored
for the time the message was received. Note that syslog-ng can add the fractions to non-ISO8601 timestamps as
well.

group()
groupidAccepted values:
rootDefault:

Description: The default group of output files. By default, syslog-ng changes the privileges of accessed files (for
example /dev/null) to root.root 0600. To disable modifying privileges, use this option with the -1 value.

keep_hostname()
yes or noType:
noDefault:

Description: Enable or disable hostname rewriting.

■ If enabled (keep_hostname(yes)), syslog-ng OSE assumes that the incoming log message was sent
by the host specified in the HOST field of the message.

■ If disabled (keep_hostname(no)), syslog-ng OSE rewrites the HOST field of the message, either to
the IP address (if the use_dns() parameter is set to no), or to the hostname (if the use_dns()
parameter is set to yes and the IP address can be resolved to a hostname) of the host sending the
message to syslog-ng OSE. For details on using name resolution in syslog-ng OSE, see Section 17.4, Using
name resolution in syslog-ng (p. 271).

194www.balabit.com

flush_timeout()

Note
If the log message does not contain a hostname in its HOST field, syslog-ng OSE automatically adds a hostname to the message.

■ For messages received from the network, this hostname is the address of the host that sent the message (this
means the address of the last hop if the message was transferred via a relay).

■ For messages received from the local host, syslog-ng OSE adds the name of the host.

This option can be specified globally, and per-source as well. The local setting of the source overrides the global
option if available.

Note
When relaying messages, enable this option on the syslog-ng OSE server and also on every relay, otherwise syslog-ng OSE
will treat incoming messages as if they were sent by the last relay.

keep_timestamp()
yes or noType:
yesDefault:

Description: Specifies whether syslog-ng should accept the timestamp received from the sending application or
client. If disabled, the time of reception will be used instead. This option can be specified globally, and per-source
as well. The local setting of the source overrides the global option if available.

log_fifo_size()
numberAccepted values:
10000Default:

Description: The number of messages that the output queue can store.

log_msg_size()
numberAccepted values:
8192Default:

Description: Maximum length of a message in bytes. This length includes the entire message (the data structure
and individual fields). The maximal value that can be set is 268435456 bytes (256MB). For messages using the
IETF-syslog message format (RFC5424), the maximal size of the value of an SDATA field is 64kB.

mark() (DEPRECATED)
numberAccepted values:
1200Default:

Description: The mark_freq() option is an alias for the deprecated mark() option. This is retained for
compatibility with syslog-ng version 1.6.x.

195www.balabit.com

keep_timestamp()

mark_freq()
numberAccepted values:
1200Default:

Description: An alias for the obsolete mark() option, retained for compatibility with syslog-ng version 1.6.x. The
number of seconds between two MARK messages. MARK messages are generated when there was no message traffic
to inform the receiver that the connection is still alive. If set to zero (0), no MARKmessages are sent. The mark-freq
can be set for global option and/or every MARK capable destination driver if mark-mode is periodical or dst-idle
or host-idle. If mark-freq is not defined in the destination, then the mark-freq will be inherited from the global
options. If the destination uses internal mark-mode, then the global mark-freq will be valid (does not matter
what mark-freq set in the destination side).

mark_mode()
internal | dst-idle | host-idle | periodical | none | globalAccepted values:
internal for pipe, program drivers

none for file, unix-dgram, unix-stream drivers

global for syslog, tcp, udp destinations

host-idle for global option

Default:

Description:The mark-mode() option can be set for the following destination drivers: file(), program(),
unix_dgram(), unix_stream(), udp(), udp6(), tcp(), tcp6(), pipe(), syslog() and in global option.

■ internal: When internal mark mode is selected, internal source should be placed in the log path as
this mode does not generate mark by itself at the destination. This mode only yelds the mark messages
from internal source. This is the mode as syslog-ng OSE 3.3 worked. MARK will be generated by internal
source if there was NO traffic on local sources:
file(), pipe(), unix-stream(), unix-dgram(), program()

■ dst-idle: Sends mark signal if there was NO traffic on destination drivers. Mark signal from internal
source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ host-idle: Sends mark signal if there was NO local message on destination drivers. For example
mark is generated even if messages were received from tcp. Mark signal from internal source will be
dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

■ periodical: Sends mark signal perodically, regardless of traffic on destination driver. Mark signal
from internal source will be dropped.
MARK signal can be sent by the following destination drivers: tcp(), udp(), syslog(), program(),
file(), pipe(), unix-stream(), unix-dgram().

196www.balabit.com

mark_freq()

■ none: Destination driver drops all MARK messages. If an explicit mark-mode() is not given to the drivers
where none is the default value, then none will be used.

■ global: Destination driver uses the global mark-mode setting. The syslog-ng interprets syntax error
if the global mark-mode is global.

Note
In case of dst-idle, host-idle and periodical; MARK message will not be written in the destination, if it is not open
yet.

Available in syslog-ng OSE 3.4 and later.

normalize_hostnames()
yes | noAccepted values:
noDefault:

Description: If enabled (normalize_hostnames(yes)), syslog-ng OSE converts the hostnames to lowercase.

Note
This setting applies only to hostnames resolved from DNS. It has no effect if the keep_hostname() option is enabled, and
the message contains a hostname.

owner()
useridAccepted values:
rootDefault:

Description: The default owner of output files. By default, syslog-ng changes the privileges of accessed files (for
example /dev/null) to root.root 0600. To disable modifying privileges, use this option with the -1 value.

perm()
permission valueAccepted values:
0600Default:

Description: The default permission for output files. By default, syslog-ng changes the privileges of accessed files
(for example /dev/null) to root.root 0600. To disable modifying privileges, use this option with the -1
value.

proto-template()
time offset (for example: +03:00)Accepted values:
local timezoneDefault:

197www.balabit.com

normalize_hostnames()

Description: Specifies a template that protocol-like destinations (for example, tcp() and syslog()) use by default.
For example:

template t_isostamp { template("$ISODATE $HOST $MSGHDR$MSG\n"); };

options { proto-template(t_isostamp); };

recv_time_zone()
time offset (for example: +03:00)Accepted values:
local timezoneDefault:

Description: Specifies the time zone associated with the incoming messages, if not specified otherwise in the
message or in the source driver. For details, see also Section 2.5, Timezones and daylight saving (p. 8) and Section 2.5.1,
A note on timezones and timestamps (p. 9).

send_time_zone()
time offset (for example: +03:00)Accepted values:
local timezoneDefault:

Description: Specifies the time zone associated with the messages sent by syslog-ng, if not specified otherwise in
the message or in the destination driver. For details, see Section 2.5, Timezones and daylight saving (p. 8).

stats_freq()
numberAccepted values:
600Default:

Description: The period between two STATS messages in seconds. STATS are log messages sent by syslog-ng,
containing statistics about dropped log messages. Set to 0 to disable the STATS messages.

stats_level()
0 | 1 | 2 | 3Accepted values:
0Default:

Description: Specifies the detail of statistics syslog-ng collects about the processed messages.

■ Level 0 collects only statistics about the sources and destinations

■ Level 1 contains details about the different connections and log files, but has a slight memory overhead

■ Level 2 contains detailed statistics based on the hostname.

■ Level 3 contains detailed statistics based on various message parameters like facility, severity, or tags.

Note that level 2 and 3 increase the memory requirements and CPU load. For details on message statistics, see
Chapter 14, Statistics of syslog-ng (p. 261).

198www.balabit.com

recv_time_zone()

sync() or sync_freq() (DEPRECATED)
numberAccepted values:
0Default:

Description: Obsolete aliases for flush_lines()

threaded()
yes|noAccepted values:
noDefault:

Description: Enable syslog-ng OSE to run in multithreaded mode and use multiple CPUs. Available only in
syslog-ng Open Source Edition 3.3 and later. See Chapter 15, Multithreading and scaling in syslog-ng OSE (p. 264) for
details.

time_reap()
numberAccepted values:
60Default:

Description: The time to wait in seconds before an idle destination file is closed. Note that only destination files
having macros in their filenames are closed automatically.

time_reopen()
numberAccepted values:
60Default:

Description: The time to wait in seconds before a dead connection is reestablished.

time_sleep()
numberAccepted values:
0Default:

Description: The time to wait in milliseconds between each invocation of the poll() iteration.

time_zone()
timezone in +/-HH:MM formatType:
unspecifiedDefault:

Description: Convert timestamps to the timezone specified by this option. If this option is not set then the original
timezone information in the message is used.

199www.balabit.com

sync() or sync_freq() (DEPRECATED)

ts_format()
rfc3164 | bsd | rfc3339 | isoAccepted values:
rfc3164Default:

Description: Specifies the timestamp format used when syslog-ng itself formats a timestamp and nothing else
specifies a format (for example: STAMP macros, internal messages, messages without original timestamps). For
details, see also Section 2.5.1, A note on timezones and timestamps (p. 9).

By default, timestamps include only seconds. To include fractions of a second (for example, milliseconds) use the
frac-digits() option. For details, see Section frac_digits() (p. 194).

Note
This option applies only to file and file-like destinations. Destinations that use specific protocols (for example, tcp(), or
syslog()) ignore this option. For protocol-like destinations, use a template locally in the destination, or use the
proto-template option.

use_dns()
yes, no, persist_onlyType:
yesDefault:

Description: Enable or disable DNS usage. The persist_only option attempts to resolve hostnames locally
from file (for example from /etc/hosts). The syslog-ng OSE application blocks on DNS queries, so enabling
DNS may lead to a Denial of Service attack. To prevent DoS, protect your syslog-ng network endpoint with firewall
rules, and make sure that all hosts which may get to syslog-ng are resolvable. This option can be specified globally,
and per-source as well. The local setting of the source overrides the global option if available.

use_fqdn()
yes or noType:
noDefault:

Description: Add Fully Qualified Domain Name instead of short hostname. This option can be specified globally,
and per-source as well. The local setting of the source overrides the global option if available.

use_time_recvd() (DEPRECATED)
yes | noAccepted values:
noDefault:

Warning
This option is not available in syslog-ng OSE version 3.2 and later. Use the R_ prefixed version of the respective macro
instead. Starting with syslog-ng OSE version 3.2, the DATE macro equals the S_DATE macro.

200www.balabit.com

ts_format()

Description: This option controls how the time related macros are expanded in filename and content templates.
If set to yes, then the non-prefixed versions of the time related macros (for example: HOUR instead of R_HOUR and
S_HOUR) refer to the time when the message was received, otherwise it refers to the timestamp which is in the
message.

Note
The timestamps in the messages are generated by the originating host and might not be accurate.

This option is deprecated as many users assumed that it controls the timestamp as it is written to logfiles/destinations,
which is not the case. To change how messages are formatted, specify a content-template referring to the appropriate
prefixed (S_ or R_) time macro.

201www.balabit.com

use_time_recvd() (DEPRECATED)

Chapter 10. TLS-encrypted message transfer

10.1. Secure logging using TLS

The syslog-ng application can send and receive log messages securely over the network using the Transport Layer
Security (TLS) protocol. TLS is an encryption protocol over the TCP/IP network protocol, so it can be used only
with TCP-based sources and destinations (tcp() and tcp6()).

TLS uses certificates to authenticate and encrypt the communication, as illustrated on the following figure:

Figure 10.1. Certificate-based authentication

The client authenticates the server by requesting its certificate and public key. Optionally, the server can also request
a certificate from the client, thus mutual authentication is also possible.

In order to use TLS encryption in syslog-ng, the following elements are required:

■ A certificate on the syslog-ng server that identifies the syslog-ng server.

■ The certificate of the Certificate Authority that issued the certificate of the syslog-ng server must be
available on the syslog-ng client.

When using mutual authentication to verify the identity of the clients, the following elements are required:

■ A certificate must be available on the syslog-ng client. This certificate identifies the syslog-ng client.

■ The certificate of the Certificate Authority that issued the certificate of the syslog-ng client must be
available on the syslog-ng server.

Mutual authentication ensures that the syslog-ng server accepts log messages only from authorized clients.

For details on configuring TLS communication in syslog-ng, see Section 10.2, Encrypting log messages with TLS (p. 203).

202www.balabit.com

Secure logging using TLS

10.2. Encrypting log messages with TLS

This section describes how to configure TLS encryption in syslog-ng. For the concepts of using TLS in syslog-ng,
see Section 10.1, Secure logging using TLS (p. 202).

Create an X.509 certificate for the syslog-ng server.

Note
The subject_alt_name parameter (or the Common Name parameter if the subject_alt_name parameter is empty) of
the server's certificate must contain the hostname or the IP address (as resolved from the syslog-ng clients and relays) of the
server (for example syslog-ng.example.com).

Alternatively, the Common Name or the subject_alt_name parameter can contain a generic hostname, for example
*.example.com.

Note that if the Common Name of the certificate contains a generic hostname, do not specify a specific hostname or an IP
address in the subject_alt_name parameter.

10.2.1. Procedure – Configuring TLS on the syslog-ng clients

Purpose:

Complete the following steps on every syslog-ng client host. Examples are provided using both the legacy BSD-syslog
protocol (using the tcp() driver) and the new IETF-syslog protocol standard (using the syslog() driver):

Steps:

Step 1. Copy the CA certificate (for example cacert.pem) of the Certificate Authority that issued the certificate
of the syslog-ng server to the syslog-ng client hosts, for example into the
/opt/syslog-ng/etc/syslog-ng/ca.d directory.
Issue the following command on the certificate: openssl x509 -noout -hash -in cacert.pem
The result is a hash (for example 6d2962a8), a series of alphanumeric characters based on the Distinguished
Name of the certificate.

Issue the following command to create a symbolic link to the certificate that uses the hash returned by the
previous command and the .0 suffix.

ln -s cacert.pem 6d2962a8.0

Step 2. Add a destination statement to the syslog-ng configuration file that uses the tls(
ca_dir(path_to_ca_directory)) option and specify the directory using the CA certificate. The
destination must use the tcp() or tcpv6() destination driver, and the IP address and port parameters
of the driver must point to the syslog-ng server.

Example 10.1. A destination statement using TLS
The following destination encrypts the log messages using TLS and sends them to the 6514/TCP port of the
syslog-ng server having the 10.1.2.3 IP address.

destination demo_tls_destination {
tcp("10.1.2.3" port(6514)

tls(ca_dir("/opt/syslog-ng/etc/syslog-ng/ca.d"))); };

A similar statement using the IETF-syslog protocol and thus the syslog() driver:

203www.balabit.com

Encrypting log messages with TLS

destination demo_tls_syslog_destination { syslog("10.1.2.3" port(6514)
transport("tls")
port(3214)
tls(ca_dir("/opt/syslog-ng/etc/syslog-ng/ca.d")));

};

Step 3. Include the destination created in Step 2 in a log statement.

Warning
The encrypted connection between the server and the client fails if the Common Name or the subject_alt_name
parameter of the server certificate does not contain the hostname or the IP address (as resolved from the syslog-ng
clients and relays) of the server.

Do not forget to update the certificate files when they expire.

10.2.2. Procedure – Configuring TLS on the syslog-ng server

Purpose:

Complete the following steps on the syslog-ng server:

Steps:

Step 1. Copy the certificate (for example syslog-ng.cert) of the syslog-ng server to the syslog-ng server host,
for example into the /opt/syslog-ng/etc/syslog-ng/cert.d directory. The certificate must be
a valid X.509 certificate in PEM format.

Step 2. Copy the private key (for example syslog-ng.key) matching the certificate of the syslog-ng server to
the syslog-ng server host, for example into the /opt/syslog-ng/etc/syslog-ng/key.d directory.
The key must be in PEM format, and must not be password-protected.

Step 3. Add a source statement to the syslog-ng configuration file that uses the tls(
key_file(key_file_fullpathname) cert_file(cert_file_fullpathname)) option and
specify the key and certificate files. The source must use the source driver (tcp() or tcpv6()) matching
the destination driver used by the syslog-ng client.

Example 10.2. A source statement using TLS
The following source receives log messages encrypted using TLS, arriving to the 1999/TCP port of any interface
of the syslog-ng server.

source demo_tls_source {
tcp(ip(0.0.0.0) port(1999)

tls(key_file("/opt/syslog-ng/etc/syslog-ng/key.d/syslog-ng.key")

cert_file("/opt/syslog-ng/etc/syslog-ng/cert.d/syslog-ng.cert"))
); };

A similar source for receiving messages using the IETF-syslog protocol:

source demo_tls_syslog_source {
syslog(ip(0.0.0.0) port(1999)
transport("tls")
tls(

key_file("/opt/syslog-ng/etc/syslog-ng/key.d/syslog-ng.key")
cert_file("/opt/syslog-ng/etc/syslog-ng/cert.d/syslog-ng.cert"))

); };

204www.balabit.com

Encrypting log messages with TLS

Step 4. Disable mutual authentication for the source by setting the following TLS option in the source statement:
tls(peer_verify(optional-untrusted);
For details on how to configure mutual authentication, see Section 10.3, Mutual authentication using TLS (p. 205).

Example 10.3. Disabling mutual authentication
The following source receives log messages encrypted using TLS, arriving to the 1999/TCP port of any interface
of the syslog-ng server. The identity of the syslog-ng client is not verified.

source demo_tls_source {
tcp(ip(0.0.0.0) port(1999)

tls(key_file("/opt/syslog-ng/etc/syslog-ng/key.d/syslog-ng.key")

cert_file("/opt/syslog-ng/etc/syslog-ng/cert.d/syslog-ng.cert")

peer_verify(optional-untrusted))); };

A similar source for receiving messages using the IETF-syslog protocol:

source demo_tls_syslog_source {
syslog(ip(0.0.0.0) port(1999)
transport("tls")
tls(

key_file("/opt/syslog-ng/etc/syslog-ng/key.d/syslog-ng.key")

cert_file("/opt/syslog-ng/etc/syslog-ng/cert.d/syslog-ng.cert")
peer_verify(optional-untrusted))); };

Warning
Do not forget to update the certificate and key files when they expire.

For the details of the available tls() options, see Section 10.4, TLS options (p. 208).

10.3. Mutual authentication using TLS

This section describes how to configure mutual authentication between the syslog-ng server and the client.
Configuring mutual authentication is similar to configuring TLS (for details, see Section 10.2, Encrypting log messages
with TLS (p. 203)), but the server verifies the identity of the client as well. Therefore, each client must have a certificate,
and the server must have the certificate of the CA that issued the certificate of the clients. For the concepts of using
TLS in syslog-ng, see Section 10.1, Secure logging using TLS (p. 202).

10.3.1. Procedure – Configuring TLS on the syslog-ng clients

Purpose:

Complete the following steps on every syslog-ng client host. Examples are provided using both the legacy BSD-syslog
protocol (using the tcp() driver) and the new IETF-syslog protocol standard (using the syslog() driver):

Steps:

Step 1. Create an X.509 certificate for the syslog-ng client.

205www.balabit.com

Mutual authentication using TLS

Step 2. Copy the certificate (for example client_cert.pem) and the matching private key (for example
client.key) to the sys log-ng cl ient host , for example into the
/opt/syslog-ng/etc/syslog-ng/cert.d directory. The certificate must be a valid X.509 certificate
in PEM format and must not be password-protected.

Step 3. Copy the CA certificate of the Certificate Authority (for example cacert.pem) that issued the certificate
of the syslog-ng server to the syslog-ng client hosts, for example into the
/opt/syslog-ng/etc/syslog-ng/ca.d directory.
Issue the following command on the certificate: openssl x509 -noout -hash -in cacert.pem
The result is a hash (for example 6d2962a8), a series of alphanumeric characters based on the Distinguished
Name of the certificate.

Issue the following command to create a symbolic link to the certificate that uses the hash returned by the
previous command and the .0 suffix.

ln -s cacert.pem 6d2962a8.0

Step 4. Add a destination statement to the syslog-ng configuration file that uses the tls(
ca_dir(path_to_ca_directory)) option and specify the directory using the CA certificate. The
destination must use the tcp() or tcpv6() destination driver, and the IP address and port parameters
of the driver must point to the syslog-ng server. Include the client's certificate and private key in the tls()
options.

Example 10.4. A destination statement using mutual authentication
The following destination encrypts the log messages using TLS and sends them to the 1999/TCP port of the
syslog-ng server having the 10.1.2.3 IP address. The private key and the certificate file authenticating the client
is also specified.

destination demo_tls_destination {
tcp("10.1.2.3" port(1999)

tls(ca_dir("/opt/syslog-ng/etc/syslog-ng/ca.d")
key_file("/opt/syslog-ng/etc/syslog-ng/key.d/client.key")
cert_file("/opt/syslog-ng/etc/syslog-ng/cert.d/client_cert.pem")));

};

destination demo_tls_syslog_destination {
syslog("10.1.2.3" port(1999)

transport("tls")
tls(ca_dir("/opt/syslog-ng/etc/syslog-ng/ca.d")

key_file("/opt/syslog-ng/etc/syslog-ng/key.d/client.key")
cert_file("/opt/syslog-ng/etc/syslog-ng/cert.d/client_cert.pem"))

); };

Step 5. Include the destination created in Step 2 in a log statement.

Warning
The encrypted connection between the server and the client fails if the Common Name or the subject_alt_name
parameter of the server certificate does not the hostname or the IP address (as resolved from the syslog-ng clients
and relays) of the server.

Do not forget to update the certificate files when they expire.

206www.balabit.com

Mutual authentication using TLS

10.3.2. Procedure – Configuring TLS on the syslog-ng server

Purpose:

Complete the following steps on the syslog-ng server:

Steps:

Step 1. Copy the certificate (for example syslog-ng.cert) of the syslog-ng server to the syslog-ng server host,
for example into the /opt/syslog-ng/etc/syslog-ng/cert.d directory. The certificate must be
a valid X.509 certificate in PEM format.

Step 2. Copy the CA certificate (for example cacert.pem) of the Certificate Authority that issued the certificate
of the syslog-ng clients to the syslog-ng server, for example into the
/opt/syslog-ng/etc/syslog-ng/ca.d directory.
Issue the following command on the certificate: openssl x509 -noout -hash -in cacert.pem
The result is a hash (for example 6d2962a8), a series of alphanumeric characters based on the Distinguished
Name of the certificate.

Issue the following command to create a symbolic link to the certificate that uses the hash returned by the
previous command and the .0 suffix.

ln -s cacert.pem 6d2962a8.0

Step 3. Copy the private key (for example syslog-ng.key) matching the certificate of the syslog-ng server to
the syslog-ng server host, for example into the /opt/syslog-ng/etc/syslog-ng/key.d directory.
The key must be in PEM format, and must not be password-protected.

Step 4. Add a source statement to the syslog-ng configuration file that uses the tls(
key_file(key_file_fullpathname) cert_file(cert_file_fullpathname)) option and
specify the key and certificate files. The source must use the source driver (tcp() or tcpv6()) matching
the destination driver used by the syslog-ng client. Also specify the directory storing the certificate of the
CA that issued the client's certificate.

Example 10.5. A source statement using TLS
The following source receives log messages encrypted using TLS, arriving to the 1999/TCP port of any interface
of the syslog-ng server.

source demo_tls_source {
tcp(ip(0.0.0.0) port(1999)

tls(key_file("/opt/syslog-ng/etc/syslog-ng/key.d/syslog-ng.key")

cert_file("/opt/syslog-ng/etc/syslog-ng/cert.d/syslog-ng.cert")

ca_dir("/opt/syslog-ng/etc/syslog-ng/ca.d"))); };

A similar source for receiving messages using the IETF-syslog protocol:

source demo_tls_syslog_source {
syslog(ip(0.0.0.0) port(1999)
transport("tls")
tls(

key_file("/opt/syslog-ng/etc/syslog-ng/key.d/syslog-ng.key")

cert_file("/opt/syslog-ng/etc/syslog-ng/cert.d/syslog-ng.cert")
ca_dir("/opt/syslog-ng/etc/syslog-ng/ca.d"))); };

207www.balabit.com

Mutual authentication using TLS

Warning
Do not forget to update the certificate and key files when they expire.

For the details of the available tls() options, see Section 10.4, TLS options (p. 208).

10.4. TLS options

The syslog-ng application is able to encrypt incoming and outgoing syslog message flows using SSL/TLS, if the
TCP transport protocol (the tcp() or tcp6() sources or destination) is used.

Note
The format of the TLS connections used by syslog-ng is similar to using syslog-ng and stunnel, but the source IP information
is not lost.

To encrypt connections, use the tls() option in the source and destination statements.

The tls() option can include the following settings:

ca_dir()
Directory nameAccepted values:
noneDefault:

Description: Name of a directory, that contains a set of trusted CA certificates in PEM format. The CA certificate
files has to be named after the 32-bit hash of the subject's name. This naming can be created using the c_rehash
utility in openssl.

cert_file()
FilenameAccepted values:
noneDefault:

Description: Name of a file, that contains an X.509 certificate in PEM format, suitable as a TLS certificate, matching
the private key.

cipher_suite()
Cipher nameAccepted values:
aes-128-cbcDefault:

Description: Specifies the cipher, hash, and key-exchange algorithms used for the encryption. The following values
are accepted: aes-128-cbc, aes-128-ecb, aes-192-cbc, aes-192-ecb, aes-256-cbc, aes-256-ecb,
base64, bf, bf-cbc, bf-cfb, bf-ecb, bf-ofb, cast, cast-cbc, cast5-cbc, cast5-cfb, cast5-ecb,
cast5-ofb, des, des-cbc, des-cfb, des-ecb, des-ede, des-ede-cbc, des-ede-cfb, des-ede-ofb,

208www.balabit.com

TLS options

des-ede3, des-ede3-cbc des-ede3-cfb des-ede3-ofbdes-ofb, des3, desx, rc2, rc2-40-cbc,
rc2-64-cbc, rc2-cbc, rc2-cfb, rc2-ecb, rc2-ofb, rc4, rc4-40, md2, md4, md5, rmd160, sha, sha1.

crl_dir()
Directory nameAccepted values:
noneDefault:

Description: Name of a directory that contains the Certificate Revocation Lists for trusted CAs. Similarly to
ca_dir() files, use the 32-bit hash of the name of the issuing CAs as filenames. The extension of the files must
be .r0.

key_file()
FilenameAccepted values:
noneDefault:

Description: Name of a file, that contains an unencrypted private key in PEM format, suitable as a TLS key.

peer_verify()
optional-trusted | optional-untrusted | required-trusted |
required-untrusted

Accepted values:

required-trustedDefault:

Description: Verification method of the peer, the four possible values is a combination of two properties of
validation:

■ whether the peer is required to provide a certificate (required or optional prefix), and

■ whether the certificate provided needs to be trusted or not.

For untrusted certificates only the existence of the certificate is checked, but it does not have to be valid — syslog-ng
accepts the certificate even if it is expired, signed by an unknown CA, or its CN and the name of the machine
mismatch.

Warning
When validating a certificate, the entire certificate chain must be valid, including the CA certificate. If any certificate of the
chain is invalid, syslog-ng OSE will reject the connection.

trusted_dn()
list of accepted distinguished namesAccepted values:
noneDefault:

Description: To accept connections only from hosts using certain certificates signed by the trusted CAs, list the
distinguished names of the accepted certificates in this parameter. For example using trusted_dn("*, O=Example

209www.balabit.com

crl_dir()

Inc, ST=Some-State, C=*") will accept only certificates issued for the Example Inc organization in
Some-State state.

trusted_keys()
list of accepted SHA-1 fingerprintsAccepted values:
noneDefault:

Description: To accept connections only from hosts using certain certificates having specific SHA-1 fingerprints,
list the fingerprints of the accepted certificates in this parameter. For example
trusted_keys("SHA1:00:EF:ED:A4:CE:00:D1:14:A4:AB:43:00:EF:00:91:85:FF:89:28:8F",
"SHA1:0C:42:00:3E:B2:60:36:64:00:E2:83:F0:80:46:AD:00:A8:9D:00:15").

Note
When using the trusted_keys() and trusted_dn() parameters, note the following:

■ First, the trusted_keys() parameter is checked. If the fingerprint of the peer is listed, the certificate validation
is performed.

■ If the fingerprint of the peer is not listed in the trusted_keys() parameter, the trusted_dn() parameter
is checked. If the DN of the peer is not listed in the trusted_dn() parameter, the authentication of the peer
fails and the connection is closed.

210www.balabit.com

trusted_keys()

Chapter 11. Manipulating messages

This chapter explains the methods that you can use to customize, reformat, and modify log messages using syslog-ng
Open Source Edition.

■ Section 11.1, Customizing message format (p. 211) explains how to use templates and macros to change the
format of log messages, or the names of logfiles and database tables.

■ Section 11.2, Modifying messages (p. 226) describes how to use rewrite rules to search and replace certain
parts of the message content.

■ Section 11.3, Regular expressions (p. 230) lists the different types of regular expressions that can be used in
various syslog-ng OSE objects like filters and rewrite rules.

11.1. Customizing message format

The following sections describe how to customize the names of logfiles, and also how to use templates, macros,
and template functions.

■ Section 11.1.1, Formatting messages, filenames, directories, and tablenames (p. 211) explains how macros work.

■ Section 11.2, Modifying messages (p. 226) describes how to use macros and templates to format log messages
or change the names of logfiles and database tables.

■ Section 11.1.5, Macros of syslog-ng OSE (p. 214) lists the different types of macros available in syslog-ng OSE.

■ Section 11.1.6, Using template functions (p. 220) explains what template functions are and how to use them.

■ Section 11.1.7, Template functions of syslog-ng OSE (p. 220) lists the template functions available in syslog-ng
OSE.

11.1.1. Formatting messages, filenames, directories, and tablenames

The syslog-ng OSE application can dynamically create filenames, directories, or names of database tables using
macros that help you organize your log messages. Macros refer to a property or a part of the log message, for
example, the ${HOST}macro refers to the name or IP address of the client that sent the log message, while ${DAY}
is the day of the month when syslog-ng has received the message. Using these macros in the path of the destination
log files allows you for example to collect the logs of every host into separate files for every day.

A set of macros can be defined as a template object and used in multiple destinations.

Another use of macros and templates is to customize the format of the syslog message, for example to add elements
of the message header to the message text. Note that if a message uses the IETF-syslog format, only the text of
the message can be customized, the structure of the header is fixed.

■ For details on using templates and macros, see Section 11.1.2, Templates and macros (p. 212).

■ For a list and description of the macros available in syslog-ng OSE, see Section 11.1.5, Macros of syslog-ng
OSE (p. 214).

211www.balabit.com

Customizing message format

■ For details on using custom macros created with CSV parsers and pattern databases, see Chapter 12,
Parsing and segmenting structured messages (p. 233) and Section 13.2.1, Using parser results in filters and
templates (p. 244), respectively.

11.1.2. Templates and macros

The syslog-ng OSE application allows you to define message templates, and reference them from every object that
can use a template. Templates can be used for example to create standard message formats or filenames. Templates
can reference one or more macros (for example date, the hostname, and so on). For a list of macros available in
syslog-ng Open Source Edition, see Section 11.1.5, Macros of syslog-ng OSE (p. 214). Fields from the structured data
(SD) part of messages using the new IETF-syslog standard can also be used as macros.

Template objects have a single option called template_escape, which is disabled by default
(template_escape(no)). This behavior is useful when the messages are passed to an application that cannot
handle escaped characters properly. Enabling template escaping (template_escape(yes)) causes syslog-ng to
escape the ', ", and backspace characters from the messages.

Note
In versions 2.1 and earlier, the template_escape() option was enabled by default.

Macros can be included by prefixing the macro name with a $ sign, just like in Bourne compatible shells. Although
using braces around macro names is not mandatory, and the "$MSG" and "${MSG}" formats are equivalent, using
the "${MSG}" format is recommended for clarity.

Default values for macros can also be specified by appending the :- characters and the default value of the macro.
If a message does not contain the field referred to by the macro, or it is empty, the default value will be used when
expanding the macro. For example, if a message does not contain a hostname, the following macro can specify a
default hostname.

${HOST:-default_hostname}

Warning
The hostname-related macros (${FULLHOST}, ${FULLHOST_FROM}, ${HOST}, and ${HOST_FROM}) do not have any
effect if the keep_hostname() option is disabled.

By default, syslog-ng sends messages using the following template: ${ISODATE} ${HOST} ${MSGHDR}${MSG}\n.
(The ${MSGHDR}${MSG} part is written together because the ${MSGHDR} macro includes a trailing whitespace.)

Note
Earlier versions of syslog-ng used templates and scripts to send log messages into SQL databases. Starting from version 2.1,
syslog-ng natively supports direct database access using the sql() destination. For details, see Section 7.8.4, sql() destination
options (p. 147).

212www.balabit.com

Templates and macros

Example 11.1. Using templates and macros
The following template (t_demo_filetemplate) adds the date of the message and the name of the host sending the
message to the beginning of the message text. The template is then used in a file destination: messages sent to this destination
(d_file) will use the message format defined in the template.

template t_demo_filetemplate {
template("${ISODATE} ${HOST} ${MSG}\n"); template_escape(no); };

destination d_file {
file("/var/log/messages" template(t_demo_filetemplate)); };

Templates can also be used inline, if they are used only at a single location. The following destination is equivalent with the
previous example:

destination d_file {
file ("/var/log/messages"

template("${ISODATE} ${HOST} ${MSG}\n") template_escape(no));
};

The following file destination uses macros to daily create separate logfiles for every client host.

destination d_file {
file("/var/log/${YEAR}.${MONTH}.${DAY}/${HOST}.log");

};

Note
Macros can be used to format messages, and also in the name of destination files or database tables. However, they cannot
be used in sources as wildcards, for example, to read messages from files or directories that include a date in their name.

11.1.3. Date-related macros

The macros related to the date of the message (for example: ${ISODATE}, ${HOUR}, and so on) have three further
variants each:

■ S_ prefix, for example, ${S_DATE}: The ${S_DATE} macro represents the date found in the log
message, that is, when the message was sent by the original application.

■ R_ prefix, for example, ${R_DATE}: ${R_DATE} is the date when syslog-ng OSE has received the
message.

■ C_ prefix, for example, C_DATE: C_DATE is the current date, that is when syslog-ng OSE processes the
message and resolves the macro.

Starting with syslog-ng OSE version 3.2, the ${DATE} macro equals the ${S_DATE} macro. In earlier versions
the value of ${DATE} depended on the use_time_recvd() global option, which was removed from syslog-ng
OSE.

11.1.4. Hard vs. soft macros

Hard macros contain data that is directly derived from the log message, for example, the ${MONTH} macro
derives its value from the timestamp. Hard macros are read-only. Soft macros (sometimes also called name-value
pairs) are either built-in macros automatically generated from the log message (for example, ${HOST}), or custom
user-created macros generated by using the syslog-ng pattern database or a CSV-parser. In contrast to hard macros,
soft macros are writable and can be modified within syslog-ng OSE, for example, using rewrite rules.

213www.balabit.com

Date-related macros

Hard and soft macros are rather similar and often treated as equivalent. Macros are most commonly used in filters
and templates, which does not modify the value of the macro, so both soft and hard macros can be used. However,
it is not possible to change the values of hard macros in rewrite rules or via any other means.

The following macros in syslog-ng OSE are hard macros and cannot be modified: BSDTAG, CONTEXT_ID, DATE,
DAY, FACILITY_NUM, FACILITY, FULLDATE, HOUR, ISODATE, LEVEL_NUM, LEVEL, MIN, MONTH_ABBREV,
MONTH_NAME, MONTH, MONTH_WEEK, , PRIORITY, PRI, SDATA, SEC, SEQNUM, SOURCEIP, STAMP, TAG, TAGS,
TZOFFSET, TZ, UNIXTIME, WEEK_DAY_ABBREV, WEEK_DAY_NAME, WEEK_DAY, WEEK, YEAR_DAY, YEAR.

The following macros can be modified:FULLHOST_FROM, FULLHOST, HOST_FROM, HOST, LEGACY_MSGHDR,
MESSAGE, MSG,MSGID, MSGONLY, PID, PROGRAM, SOURCE. Custom values created using rewrite rules or parsers
can be modified as well, just like stored matches of regular expressions ($0 ... $255).

11.1.5. Macros of syslog-ng OSE

The following macros are available in syslog-ng OSE.

AMPM
Description: Typically used together with the ${HOUR12} macro, ${AMPM} returns the period of the day: AM
for hours before mid day and PM for hours after mid day. In reference to a 24-hour clock format, AM is between
00:00-12:00 and PM is between 12:00-24:00. 12AM is midnight. Available in syslog-ng OSE 3.4 and later.

BSDTAG
Description: Facility/priority information in the format used by the FreeBSD syslogd: a priority number followed
by a letter that indicates the facility. The priority number can range from 0 to 7. The facility letter can range from
A to Y, where A corresponds to facility number zero (LOG_KERN), B corresponds to facility 1 (LOG_USER),
and so on.

Custom macros
Description: CSV parsers and pattern databases can also define macros from the content of the messages, for
example, a pattern database rule can extract the username from a login message and create a macro that references
the username. For details on using custom macros created with CSV parsers and pattern databases, see Chapter 12,
Parsing and segmenting structured messages (p. 233) and Section 13.2.1, Using parser results in filters and templates (p. 244),
respectively.

DATE, C_DATE, R_DATE, S_DATE
Description: Date of the message using the BSD-syslog style timestamp format (month/day/hour/minute/second,
each expressed in two digits). This is the original syslog time stamp without year information, for example: Jun
13 15:58:00.

DAY, C_DAY, R_DAY, S_DAY
Description: The day the message was sent.

FACILITY
Description: The name of the facility (for example, kern) that sent the message.

214www.balabit.com

Macros of syslog-ng OSE

FACILITY_NUM
Description: The numerical code of the facility (for example, 0) that sent the message.

FULLDATE, C_FULLDATE, R_FULLDATE, S_FULLDATE
Description: A nonstandard format for the date of the message using the same format as ${DATE}, but including
the year as well, for example: 2006 Jun 13 15:58:00.

FULLHOST
Description: The full FQDN of the host name chain (without trimming chained hosts), including the domain
name.

FULLHOST_FROM
Description: FQDN of the host that sent the message to syslog-ng as resolved by syslog-ng using DNS. If the
message traverses several hosts, this is the last host in the chain.

The syslog-ng OSE application uses the following procedure to determine the value of the $FULLHOST_FROM
macro:

1. The syslog-ng OSE application takes the IP address of the host sending the message.

2. If the use_dns() option is enabled, syslog-ng OSE attempts to resolve the IP address to a hostname.
If it succeeds, the returned hostname will be the value of the $FULLHOST_FROM macro. This value will
be the FQDN of the host if the use_fqdn() option is enabled, but only the hostname if use_fqdn()
is disabled.

3. If the use_dns() option is disabled, or the address resolution fails, the ${FULLHOST_FROM} macro
will return the IP address of the sender host.

HOUR, C_HOUR, R_HOUR, S_HOUR
Description: The hour of day the message was sent.

HOUR12, C_HOUR12, R_HOUR12, S_HOUR12
Description: The hour of day the message was sent in 12-hour clock format. See also the ${AMPM} macro. 12AM
is midnight. Available in syslog-ng OSE 3.4 and later.

HOST
Description: The name of the source host where the message originates from.

■ If the message traverses several hosts and the chain_hostnames() option is on, the first host in the
chain is used.

■ If the keep_hostname() option is disabled (keep_hostname(no)), the value of the $HOST macro
will be the DNS hostname of the host that sent the message to syslog-ng OSE (that is, the DNS hostname
of the last hop). In this case the $HOST and $HOST_FROM macros will have the same value.

■ If the keep_hostname() option is enabled (keep_hostname(yes)), the value of the $HOST macro
will be the hostname retrieved from the log message. That way the name of the original sender host can
be used, even if there are log relays between the sender and the server.

215www.balabit.com

Macros of syslog-ng OSE

HOST_FROM
Description: Name of the host that sent the message to syslog-ng, as resolved by syslog-ng using DNS. If the
message traverses several hosts, this is the last host in the chain.

ISODATE, C_ISODATE, R_ISODATE, S_ISODATE
Description: Date of the message in the ISO 8601 compatible standard timestamp format
(yyyy-mm-ddThh:mm:ss+-ZONE), for example: 2006-06-13T15:58:00.123+01:00. If possible, it is
recommended to use ${ISODATE} for timestamping. Note that syslog-ng can produce fractions of a second (for
example milliseconds) in the timestamp by using the frac_digits() global or per-destination option.

LEVEL_NUM
Description: The priority (also called severity) of the message, represented as a numeric value, for example, 3. For
the textual representation of this value, use the ${LEVEL} macro. See Section PRIORITY or LEVEL (p. 217) for
details.

LOGHOST
Description: The hostname of the computer running syslog-ng OSE — it returns the same result as the hostname
command.

MIN, C_MIN, R_MIN, S_MIN
Description: The minute the message was sent.

MONTH, C_MONTH, R_MONTH, S_MONTH
Description: The month the message was sent as a decimal value, prefixed with a zero if smaller than 10.

MONTH_ABBREV, C_MONTH_ABBREV, R_MONTH_ABBREV, S_MONTH_ABBREV
Description: The English abbreviation of the month name (3 letters).

MONTH_NAME, C_MONTH_NAME, R_MONTH_NAME, S_MONTH_NAME
Description: The English name of the month name.

MONTH_WEEK, C_MONTH_WEEK, R_MONTH_WEEK, S_MONTH_WEEK
Description: The number of the week in the given month (0-5). The week with numerical value 1 is the first week
containing a Monday. The days of month before the first Monday are considered week 0. For example, if a 31-day
month begins on a Sunday, then the 1st of the month is week 0, and the end of the month (the 30th and 31st) is
week 5.

MSEC, C_MSEC, R_MSEC, S_MSEC
Description: The millisecond the message was sent.

Available in syslog-ng OSE version 3.4 and later.

MSG or MESSAGE
Description: Text contents of the log message without the program name and pid. Note that this has changed in
syslog-ng version 3.0; in earlier versions this macro included the program name and the pid. In syslog-ng 3.0, the

216www.balabit.com

Macros of syslog-ng OSE

${MSG} macro became equivalent with the ${MSGONLY} macro. The program name and the pid together are
available in the ${MSGHDR} macro.

MSGHDR
Description: The name and the pid of the program that sent the log message in PROGRAM[PID]: format. Includes
a trailing whitespace. Note that the macro returns an empty value if both the program and pid fields of the message
are empty.

MSGID
Description: A string specifying the type of the message in IETF-syslog (RFC5424-formatted) messages. For
example, a firewall might use the ${MSGID} "TCPIN" for incoming TCP traffic and the ${MSGID} "TCPOUT"
for outgoing TCP traffic. By default, syslog-ng OSE does not specify this value, but uses a dash (-) character instead.
If an incoming message includes the ${MSGID} value, it is retained and relayed without modification.

MSGONLY
Description: Message contents without the program name or pid.

PID
Description: The PID of the program sending the message.

PRI
Description: The priority and facility encoded as a 2 or 3 digit decimal number as it is present in syslog messages.

PRIORITY or LEVEL
Description: The priority (also called severity) of the message, for example, error. For the textual representation
of this value, use the ${LEVEL} macro. See Section PRIORITY or LEVEL (p. 217) for details.

PROGRAM
Description: The name of the program sending the message. Note that the content of the ${PROGRAM} variable
may not be completely trusted as it is provided by the client program that constructed the message.

SDATA, .SDATA.SDID.SDNAME
Description: The syslog-ng application automatically parses the STRUCTURED-DATA part of IETF-syslog
messages, which can be referenced in macros. The ${SDATA} macro references the entire STRUCTURED-DATA
part of the message, while structured data elements can be referenced using the ${.SDATA.SDID.SDNAME}macro.

Note
When using STRUCTURED-DATA macros, consider the following:

■ When referencing an element of the structured data, the macro must begin with the dot (.) character. For
example, ${.SDATA.timeQuality.isSynced}.

■ The SDID and SDNAME parts of the macro names are case sensitive: ${.SDATA.timeQuality.isSynced}
is not the same as ${.SDATA.TIMEQUALITY.ISSYNCED}.

217www.balabit.com

Macros of syslog-ng OSE

Example 11.2. Using SDATA macros
For example, if a log message contains the following structured data: [exampleSDID@0 iut="3"
eventSource="Application" eventID="1011"][examplePriority@0 class="high"] you can use macros
like: ${.SDATA.exampleSDID@0.eventSource} — this would return the Application string in this case.

SEC, C_SEC, R_SEC, S_SEC
Description: The second the message was sent.

SEQNUM
Description: The sequence number of the message is a unique identifier of the message between the end-points.
The syslog-ng client calculates this number when processing a new message from a local source; it is not calculated
for relayed messages. The sequence number increases for every message, and is not lost even if syslog-ng is reloaded.
The sequence number starts again from 0 when syslog-ng OSE is restarted. The sequence number is a part of every
message that uses the new IETF-syslog protocol (${.SDATA.meta.sequenceId}), and can be added to
BSD-syslog messages using this macro.

syslog-ng OSE versions 3.4 and later versions store the sequence number from Cisco IOS log messages using the
extended timestamp format in this macro. If this message is then forwarded using the IETF-syslog protocol,
syslog-ng OSE includes the sequence number received from the Cisco device in the
${.SDATA.meta.sequenceId} part of the message.

Note
To enable sequence numbering of log messages on Cisco devices, use the following command on the device (available in IOS
10.0 and later): service sequence-numbers.

For details, see Cisco IOS Configuration Fundamentals and Network Management Command Reference.

SOURCEIP
Description: IP address of the host that sent the message to syslog-ng. (That is, the IP address of the host in the
${FULLHOST_FROM} macro.) Please note that when a message traverses several relays, this macro contains the IP
of the last relay.

STAMP, R_STAMP, S_STAMP
Description: A timestamp formatted according to the ts_format() global or per-destination option.

SYSUPTIME
Description: The time elapsed since the computer running syslog-ng OSE has booted. If this data is not available,
the macro contains the time elapsed since syslog-ng OSE was started. The value of this macro is an integer containing
the time in 1/100th of the second.

Available in syslog-ng OSE version 3.4 and later.

TAG
Description: The priority and facility encoded as a 2 digit hexadecimal number.

218www.balabit.com

Macros of syslog-ng OSE

http://www.cisco.com/en/US/docs/ios/12_3/configfun/command/reference/cfr_1g07.html#wp1029551

TAGS
Description: A comma-separated list of the tags assigned to the message.

Note
Note that the tags are not part of the log message and are not automatically transferred from a client to the server. For example,
if a client uses a pattern database to tag the messages, the tags are not transferred to the server. A way of transferring the tags
is to explicitly add them to the log messages using a template and the ${TAGS} macro, or to add them to the structured
metadata part of messages when using the IETF-syslog message format.

When sent as structured metadata, it is possible to reference to the list of tags on the central server, and for example, to add
them to a database column.

TZ, C_TZ, R_TZ, S_TZ
Description: Equivalent to ${TZOFFSET}, used to mean the time zone name abbreviation in syslog-ng 1.6.x.

TZOFFSET, C_TZOFFSET, R_TZOFFSET, S_TZOFFSET
Description: The time-zone as hour offset from GMT; for example: -07:00. In syslog-ng 1.6.x this used to be
-0700 but as ${ISODATE} requires the colon it was added to ${TZOFFSET} as well.

UNIXTIME, C_UNIXTIME, R_UNIXTIME, S_UNIXTIME
Description: Standard unix timestamp, represented as the number of seconds since 1970-01-01T00:00:00.

USEC, C_USEC, R_USEC, S_USEC
Description: The microsecond the message was sent.

Available in syslog-ng OSE version 3.4 and later.

YEAR, C_YEAR, R_YEAR, S_YEAR
Description: The year the message was sent.

WEEK, C_WEEK, R_WEEK, S_WEEK
Description: The week number of the year, prefixed with a zero for the first nine week of the year. (The first
Monday in the year marks the first week.)

WEEK_ABBREV, C_WEEK_ABBREV, R_WEEK_ABBREV, S_WEEK_ABBREV
Description: The 3-letter English abbreviation of the name of the day the message was sent, for example Thu.

WEEK_DAY, C_WEEK_DAY, R_WEEK_DAY, S_WEEK_DAY
Description: The day of the week as a numerical value (1-7).

WEEKDAY, C_WEEKDAY, R_WEEKDAY, S_WEEKDAY
Description: These macros are deprecated, use ${WEEK_ABBREV}, ${R_WEEK_ABBREV},
${S_WEEK_ABBREV} instead. The 3-letter name of the day of week the message was sent, for example Thu.

WEEK_DAY_NAME, C_WEEK_DAY_NAME, R_WEEK_DAY_NAME, S_WEEK_DAY_NAME
Description: The English name of the day.

219www.balabit.com

Macros of syslog-ng OSE

11.1.6. Using template functions

A template function is a transformation: it modifies the way macros or name-value pairs are expanded. Template
functions can be used in template definitions, or when macros are used in the configuration of syslog-ng OSE.
Template functions use the following syntax:

$(function-name parameter1 parameter2 parameter3 ...)

For example, the $(echo) template function simply returns the value of the macro it receives as a parameter, thus
$(echo ${HOST}) is equivalent to ${HOST}.

The parameters of template functions are separated by a whitespace character. If you want to use a longer string
or multiple macros as a single parameter, enclose the parameter in double-quotes or apostrophes. For example:

$(echo "${HOST} ${PROGRAM} ${PID}")

Template functions can be nested into each other, so the parameter of a template function can be another template
function, like:

$(echo $(echo ${HOST}))

For details on using template functions, see the descriptions of the individual template functions in Section 11.1.7,
Template functions of syslog-ng OSE (p. 220).

11.1.7. Template functions of syslog-ng OSE

The following template functions are available in syslog-ng OSE.

echo
Syntax:

$(echo argument)

Description: Returns the value of its argument. using $(echo ${HOST}) is equivalent to ${HOST}.

format-json
Syntax:

$(format-json parameters)

Description: The format-json template function receives value-pairs as parameters and converts them into
JavaScript Object Notation (JSON) format. Including the template function in a message template allows you to
store selected information about a log message (that is, its content, macros, or other metadata) in JSON format.

For details on selecting value-pairs in syslog-ng OSE and for possibilities to specify which information to convert
to JSON format, see Section 2.8.4, Structuring macros, metadata, and other value-pairs (p. 16). Note that the syntax of
format-json is different from the syntax of value-pairs(): format-json uses a syntax similar to command
lines.

220www.balabit.com

Using template functions

Example 11.3. Using the format-json template function
The following example selects every available information about the log message, except for the date-related macros (R_*
and S_*), selects the .SDATA.meta.sequenceId macro, and defines a new value-pair called MSGHDR that contains the
program name and PID of the application that sent the log message.

$(format-json --scope syslog,all_macros,selected_macros \
--exclude R_* --exclude S_* --key .SDATA.meta.sequenceId \
--pair MSGHDR="$PROGRAM[$PID]: ")

The following example shows how to use this template function to store log messages in JSON format:

destination d_json {
file("/var/log/messages.json" template("$(format_json --scope selected_macros --scope

nv_pairs)"));
};

Note
In case of syslog-ng macros starting with a dot (for example ".SDATA.meta.sequenceID") an empty key name is added
at the top level of the JSON structure. You can work around this by adding --shift 1 as a parameter to the template
function. For example in case of ".SDATA.meta.sequenceID", an empty key name is added at the top level of the JSON
structure:

{"":
{"SDATA" :

{"meta" :
{"sequenceID": "123"}

}
}

}

geoip
Syntax:

$(geoip <IP-address>)

Description: This template function returns the 2-letter country code of any IPv4 address or host. Currently only
the 2-letter codes are supported, and only from the default database. For example, $(geoip $HOST)

Note
This template function is available only if syslog-ng OSE has been compiled with the --enable-geoip compiling option.

grep
Syntax:

$(grep condition value-to-select)

Description: The grep template function is useful when using a pattern database to correlate related log messages.
The grep template function can be used to filter the messages of the same context when the index of the particular
message is not known.

221www.balabit.com

Template functions of syslog-ng OSE

Example 11.4. Using the grep template function
The following example selects the message of the context that has a username name-value pair with the root value, and
returns the value of the auth_method name-value pair.

$(grep ("${username}" == "root") ${auth_method})

It is possible to specify multiple name-value pairs as parameters, separated with commas. If multiple messages
match the condition of grep, these will be returned also separated by commas. This can be used for example to
collect the e-mail recipients from postfix messages.

tfhash
Syntax:

$(<method> [opts] $arg1 $arg2 $arg3...)

Options:

--length N, -l N

Truncate the hash to the first N characters.

Description: <method> can be one of md5, md4, sha1, sha256, sha512 and "hash", which is equivalent to md5.
Macros are expected as arguments, and they are concatenated without the use of additional characters.

This template function can be used for anonymizing sensitive parts of the log message (for example username) that
were parsed out using PatternDB before storing or forwarding the message. This way, the ability of correlating
messages along this value is retained.

Also, using this template, quasi-unique IDs can be generated for data, using the --length option. This way, IDs
will be shorter than a regular hash, but there is a very small possibility of them not being as unique as a non-truncated
hash.

Note
These template functions are available only if syslog-ng OSE has been compiled with the --enable-ssl compile option
and the tfhash module has been loaded. By default, syslog-ng OSE loads every available module.

Example 11.5. Using the $(hash) template function
The following example calculates the SHA1 hash of the hostname of the message:

$(sha1 $HOST)

To use shorter hashes, set the --length:

$(sha1 --length 6 $HOST)

To replace the hostname with its hash, use a rewrite rule:

rewrite r_rewrite_hoistname{set("$(sha1 $HOST)", value("HOST"));};

if
Syntax:

222www.balabit.com

Template functions of syslog-ng OSE

$(if (<condition>) <true template> <false template>)

Description: Returns the value of the <true template> parameter if the <condition> is true. If the
<condition> is false, the value of <false template> is returned.

Example 11.6. Using pattern databases and the if template function
The following example returns violation if the username name-value pair of a message processed with pattern database
is root, and system otherwise.

$(if ("${username}" == "root") "violation" "system")

This can be used to set the class of a message in pattern database rules based on the condition.

<value name="username">$(if ("${username}" == "root") "violation" "system")</value>

Since template functions can be embedded into each other, it is possible to use another template function as the template of
the first one. For example, the following expression returns root if the username is root, admin if the username is joe,
and normal user otherwise.

<value name="username">
$(if ("${username}" == "root")

"root"
$(if ("${username}" == "joe") "admin" "normal user")
"normal user")</value>

indent-multi-line
Syntax:

$(indent-multi-line parameter)

Description: This template function makes it possible to write multi-line log messages into a file. The first line is
written like a regular message, subsequent lines are indented with a tab, in compliance with RFC822.

Example 11.7. Using the indent-multi-line template function
The following example writes multi-line messages into a text file.

destination d_file {
file ("/var/log/messages"

template("${ISODATE} ${HOST} $(indent-multi-line ${MESSAGE})\n"));
};

ipv4-to-int
Syntax:

$(ipv4-to-int parameter)

Description: Converts the specified IPv4 address to its numeric representation. The numerical value of an IPv4
address is calculated by treating the IP address as a 4-byte hexadecimal value. For example, the 192.168.1.1 address
equals to: 192=C0, 168=A8, 1=01, 1=01, or C0A80101, which is 3232235777 in decimal representation.

Note
This template function is available only if the convertfuncs module has been loaded. By default, syslog-ng OSE loads
every available module.

223www.balabit.com

Template functions of syslog-ng OSE

length
Syntax:

$(length "<macro>")

Description: Returns the length of the macro in characters, for example, the length of the message. For example,
the following filter selects messages that are shorter than 16 characters:

f_short {
match ('-', value ("$(if ($(length "${MSG}") <= 16) "-" "+")"));

};

Numerical operations
Syntax:

$(<operation> "<value1>" "<value2>")

Description: These template functions allow you to manipulate numbers, that is, to perform addition (+),
substraction (-), multiplication (*), division (/), and modulus (%). All of them require two numeric arguments. The
result is NaN (Not-a-Number) if the parameters are not numbers, cannot be parsed, or if a division by zero would
occur. For example, to add the value of two macros, use the following template function:

$(+ "${<MACRO1>}" "${<MACRO2>}");

sanitize
Syntax:

$(sanitize <options> "<macro1>" "<macro2> ...")

Description: This file replaces the special characters in macro values, for example, it can replace the slash (/)
characters in a filename with the underscore (_) character. If you specify multiple arguments, they will be concatenated
using the / character, so they can be used as separate directory levels when used in filenames.

The function has the following options:

--ctrl-chars or -c Filter control characters (characters that have an ASCII code of
32 or lower). This option is used by default.

--invalid-chars
<characterlist> or -i
<characterlist>

The list of characters to be replaced with underscores (_). The
default list contains the / character. The following example replaces
the \ and @ characters, so for example, fo\o@bar becomes foobar:

$(sanitize -i \@ $PROGRAM)

--no-ctrl-chars or -C Do not filter the control characters (characters that have an ASCII
code of 32 or lower).

--replacement
<replacement-character> or
-r <replacement-character>

The character used to replace invalid characters. By default, this is
the underscore (_). The following example replaces invalid
characters with colons instead of underscores, so for example,
foo/bar becomes foo;bar:

224www.balabit.com

Template functions of syslog-ng OSE

$(sanitize -r ; $PROGRAM)

Example 11.8. Using the sanitize template function
The following example uses the sanitize function on two macros, and the results are used as directory names in a file destination.

file("/var/log/$(sanitize $HOST $PROGRAM)/messages");

This is equivalent to file("/var/log/$HOST/$PROGRAM/messages");, but any slashes in the values of the $HOST
and $PROGRAM macros are replaced with underscores.

strip
Syntax:

$(strip "<macro>")

Description: Deletes whitespaces from the beginning and the end of a macro. You can specify multiple macros
separated with whitespace in a single template function, for example:

$(strip "${MSG}" "${PROGRAM}");
};

substr
Syntax:

$(substr "<argument>" "<offset>" "<length>")

Description: This function extracts a substring of a string.

argument The string to extract the substring from, for example, "${MSG}"

offset Specifies where the substring begins (in characters). 0 means to
start from the beginning of the string, 5 means to skip the first 5
characters of the string, and so on. Use negative numbers to specify
where to start from the end of the string, for example, -1 means
the last character, -5 means to start five characters before the end
of the string.

length Optional parameter: The number of characters to extract. If not
specified, the substring will be extracted from the offset to the end
of the string. Use negative numbers to stop the substring before
the end of the string, for example, -5 means the substring ends
five characters before the end of the string.

Example 11.9. Using the substr template function
Skip the first 15 characters of the message, and select the rest:

$(substr "${MSG}" "15");

Select characters 16-30 of the message:

$(substr "${MSG}" "15" "30");

Select the last 15 characters of the message:

225www.balabit.com

Template functions of syslog-ng OSE

$(substr "${MSG}" "-15");

uuid
Syntax:

$(uuid)

Description: Generates a Universally Unique IDentifier (UUID) that complies with RFC4122. That way, an UUID
can be added to the message soon after it is received, so messages stored in multiple destinations can be identified.
For example, when storing messages in a database and also in files, the UUID can be used to find a particular
message both in the database and the files.

To generate a UUID, you can use a rewrite rule to create a new value-pair for the message.

Example 11.10. Using Universally Unique Identifiers
The following example adds a value-pair called MESSAGE_UUID to the message using a rewrite rule and a template.

rewrite r_add_uuid { set("$(uuid)" value("MESSAGE_UUID")); };
destination d_file {

file ("/var/log/messages"
template("$MESSAGE_UUID $ISODATE $HOST $MSG\n")
template_escape(no)
);

};

log { source(s_network);
rewrite(r_add_uuid);
destination(d_file);

};

Note
This template function is available only if the tfuuidmodule has been loaded. By default, syslog-ng OSE loads every available
module.

11.2. Modifying messages

The syslog-ng application can rewrite parts of the messages using rewrite rules. Rewrite rules are global objects
similar to parsers and filters and can be used in log paths. The syslog-ng application has two methods to rewrite
parts of the log messages: substituting (setting) a part of the message to a fix value, and a general search-and-replace
mode.

Substitution completely replaces a specific part of the message that is referenced using a built-in or user-defined
macro.

226www.balabit.com

Modifying messages

http://www.ietf.org/rfc/rfc4122.txt

General rewriting searches for a string in the entire message (or only a part of the message specified by a macro)
and replaces it with another string. Optionally, this replacement string can be a template that contains macros.

Rewriting messages is often used in conjunction with message parsing Section 12.2, Parsing messages (p. 234).

Rewrite rules are similar to filters: they must be defined in the syslog-ng configuration file and used in the log
statement.

Note
The order of filters, rewriting rules, and parsers in the log statement is important, as they are processed sequentially.

11.2.1. Replacing message parts

To replace a part of the log message, you have to:

■ define a string or regular expression to find the text to replace

■ define a string to replace the original text (macros can be used as well)

■ select the field of the message that the rewrite rule should process

Substitution rules can operate on any value available via macros, for example HOST, MESSAGE, PROGRAM, or
any user-defined macros created using parsers (for details, see Chapter 12, Parsing and segmenting structured messages (p. 233)
and Chapter 13, Processing message content with a pattern database (p. 240)). The only exceptions are the FACILITY,
SEVERITY, TAGS, and the date-related fields, which cannot be rewritten. You can also rewrite the structured-data
fields of messages complying to the RFC5424 (IETF-syslog) message format. Substitution rules use the following
syntax:

Declaration:
rewrite <name_of_the_rule> {

subst("<string or regular expression to find>",
"<replacement string>", value(<field name>), flags());

};

The type() and flags() options are optional. The type() specifies the type of regular expression to use; while
the flags() are the flags of the regular expressions. For details on regular expressions, see Section 11.3, Regular
expressions (p. 230).

A single substitution rule can include multiple substitutions that are applied sequentially to the message. Note that
rewriting rules must be included in the log statement to have any effect.

Tip
For case-insensitive searches, add the flags(ignore-case) option; to replace every occurrence of the string, add
flags(global) option.

227www.balabit.com

Replacing message parts

Example 11.11. Using substitution rules
The following example replaces the IP in the text of the message with the string IP-Address.

rewrite r_rewrite_subst{subst("IP", "IP-Address", value("MESSAGE"));};

To replace every occurrence, use:

rewrite r_rewrite_subst{
subst("IP", "IP-Address", value("MESSAGE"), flags("global"));

};

Multiple substitution rules are applied sequentially; the following rules replace the first occurrence of the string IP with the
string IP-Addresses.

rewrite r_rewrite_subst{
subst("IP", "IP-Address", value("MESSAGE"));
subst("Address", "Addresses", value("MESSAGE"));

};

11.2.2. Setting message fields to specific values

To set a field of the message to a specific value, you have to:

■ define the string to include in the message, and

■ select the field where it should be included.

You can set the any value available via macros, for example HOST, MESSAGE, PROGRAM, or any user-defined
macros created using parsers (for details, see Chapter 12, Parsing and segmenting structured messages (p. 233) and Chapter
13, Processing message content with a pattern database (p. 240)). The only exceptions are the FACILITY, SEVERITY,
TAGS, and the date-related fields, which cannot be rewritten. Note that the rewrite operation completely replaces
any previous value of that field. Use the following syntax:

Declaration:
rewrite <name_of_the_rule> {

set("<string to include>", value(<field name>));
};

Example 11.12. Setting message fields to a particular value
The following example sets the HOST field of the message to myhost.

rewrite r_rewrite_set{set("myhost", value("HOST"));};

For details on rewriting SDATA fields, see Section 11.2.3, Creating custom SDATA fields (p. 228).

11.2.3. Creating custom SDATA fields

If you use RFC5424-formatted (IETF-syslog) messages, you can also create custom fields in the SDATA part of
the message (For details on the SDATA message part, see Section 2.8.2.3, The STRUCTURED-DATA message
part (p. 15)). According to RFC5424, the name of the field (its SD-ID) must not contain the @ character for reserved
SD-IDs. Custom SDATA fields must be in the following format: name@<private enterprise number>, for
example, mySDATA-field@18372.4. (18372.4 is the private enterprise number of BalaBit IT Security, the
developer of syslog-ng OSE.)

228www.balabit.com

Setting message fields to specific values

Example 11.13. Rewriting custom SDATA fields
The following example sets the sequence ID field of the RFC5424-formatted (IETF-syslog) messages to a fixed value. This
field is a predefined SDATA field with a reserved SD-ID, therefore its name does not contain the @ character.

rewrite r_sd {
set("55555" value(".SDATA.meta.sequenceId"));

};

It is also possible to set the value of a field that does not exist yet, and create a new, custom name-value pair that is associated
with the message. The following example creates the MODIFIED@18372.4 field and sets its value to yes. If you use the
${MODIFIED@18372.4} macro in a template or SQL table, its value will be yes for every message that was processed with
this rewrite rule, and empty for every other message.

rewrite r_rewrite_set {
set("yes", value("MODIFIED@18372.4"));

};

11.2.4. Conditional rewrites

Starting with 3.2, it is possible to apply a rewrite rule to a message only if certain conditions are met. The
condition() option effectively embeds a filter expression into the rewrite rule: the message is modified only if
the message passes the filter. If the condition is not met, the message is passed to the next element of the log path
(that is, the element following the rewrite rule in the log statement, for example, the destination). Any filter expression
normally used in filters can be used as a rewrite condition. Existing filter statements can be referenced using the
filter() function within the condition.

Tip
Using conditions in rewrite rules can simplify your syslog-ng OSE configuration file, as you do not need to create separate
log paths to modify certain messages.

Example 11.14. Using conditional rewriting
The following example sets the HOST field of the message to myhost only if the message was sent by the myapplication
program.

rewrite r_rewrite_set{set("myhost", value("HOST") condition(program("myapplication")));};

The following example is identical to the previous one, except that the condition references an existing filter template.

filter f_rewritefilter {program("myapplication");};
rewrite r_rewrite_set{set("myhost", value("HOST") condition(filter(f_rewritefilter)));};

11.2.5. Adding and deleting tags

To add or delete a tag, you can use rewrite rules. To add a tag, use the following syntax:

rewrite <name_of_the_rule> {
set-tag("<tag-to-add>");

};

To delete a tag, use the following syntax:

229www.balabit.com

Conditional rewrites

rewrite <name_of_the_rule> {
clear-tag("<tag-to-delete>");

};

You cannot use macros in the tags.

11.3. Regular expressions

Filters and substitution rewrite rules can use regular expressions. In regular expressions, the characters
()[].*?+^$|\ are used as special symbols. Depending on how you want to use these characters and which
quotation mark you use, these characters must be used differently, as summarized below.

■ Strings between single quotes ('string') are treated literally and are not interpreted at all, you do not
have to escape special characters. For example the output of '\x41' is \x41 (characters as follows:
backslash, x(letter), 4(number), 1(number)). This makes writing and reading regular expressions much
more simple: it is recommended to use single quotes when writing regular expressions.

■ When enclosing strings between double-quotes ("string"), the string is interpreted and you have to
escape special characters, that is, to precede them with a backslash (\) character if they are meant literally.
For example the output of the "\x41" is simply the letter a. Therefore special characters like \(backslash)
"(quotation mark) must be escaped (\\ and \"). The following expressions are interpreted: \a; \n; \r;
\t; \v. For example, the \$40 expression matches the $40 string. Backslashes have to be escaped as
well if they are meant literally, for example, the \\d expression matches the \d string.

Tip
If you use single quotes in, you do not need to escape the backslash, for example match("\\.") is equivalent
to match('\.').

■ Enclosing alphanumeric strings between double-quotes ("string") is not necessary, you can just omit
the double-quotes. For example when writing filters, match("sometext") and match(sometext)
will both match for the sometext string.

Note
Only strings containing alphanumerical characters can be used without quotes or double quotes. If the string
contains whitespace or any special characters (()[].*?+^$|\ or ;:#), you must use quotes or double quotes.

When using the ;:# characters, you must use quotes or double quotes, but escaping them is not required.

By default, all regular expressions are case sensitive. To disable the case sensitivity of the expression, add the
flags(ignore-case) option to the regular expression.

filter demo_regexp_insensitive { host("system" flags(ignore-case)); };

The regular expressions can use up to 255 regexp matches (${1} ... ${255}), but only from the last filter and
only if the flags("store-matches") flag was set for the filter. For case-insensitive searches, use the
flags("ignore-case") option.

230www.balabit.com

Regular expressions

11.3.1. Types and options of regular expressions

By default, syslog-ng uses POSIX-style regular expressions. To use other expression types, add the type() option
after the regular expression.

The syslog-ng OSE application supports the following expression types:

■ POSIX regular expressions

■ Perl Compatible Regular Expressions (PCRE)

■ Literal string searches

■ Glob patterns without regular expression support

posix
Description: Use POSIX regular expressions. If the type() parameter is not specified, syslog-ng uses POSIX
regular expressions by default.

Posix regular expressions have the following flag options:

global: Usable only in rewrite rules; match for every occurrence of the expression, not only the first one.

ignore-case: Disable case-sensitivity.

store-matches: Store the matches of the regular expression into the $1, ... $255 variables. Matches from
the last filter expression can be referenced in regular expressions.

utf8: Use UTF-8 matching.

Example 11.15. Using Posix regular expressions

filter f_message { message("keyword" flags("utf8" "ignore-case"));

pcre
Description: Use Perl Compatible Regular Expressions (PCRE). PCRE expressions can be used if syslog-ng OSE
was compiled with the --enable-pcre option enabled. Execute the syslog-ng -V command to check if your
binary supports PCRE regular expressions.

PCRE regular expressions have the following flag options:

global: Usable only in rewrite rules; match for every occurrence of the expression, not only the first one.

ignore-case: Disable case-sensitivity.

nobackref: Do not store back references for the matches — improves performance.

store-matches: Store the matches of the regular expression into the $1, ... $255 variables. Named matches
(also called named subpatterns), for example (?<name>...), are stored as well. Matches from the last filter
expression can be referenced in regular expressions.

231www.balabit.com

Types and options of regular expressions

unicode: Use Unicode support for UTF-8 matches: UTF-8 character sequences are handled as single characters.

utf8: An alias for the unicode flag.

Example 11.16. Using PCRE regular expressions

rewrite r_rewrite_subst
{subst("a*", "?", value("MESSAGE") type("pcre") flags("utf8" "global")); };

string
Description: Match the strings literally, without regular expression support. By default, only identical strings are
matched. For partial matches, use the flags("prefix") or the flags("substring") flags.

glob
Description: Match the strings against a pattern containing '*' and '?' wildcards, without regular expression and
character range support. The advantage of glob patterns to regular expressions is that globs can be processed much
faster.

* matches an arbitrary string, including an empty string

? matches an arbitrary character

Note

■ The wildcards can match the / character.

■ You cannot use the * and ? literally in the pattern.

11.3.2. Optimizing regular expressions

The host(), match(), and program() filter functions and some other syslog-ng objects accept regular expressions
as parameters. But evaluating general regular expressions puts a high load on the CPU, which can cause problems
when the message traffic is very high. Often the regular expression can be replaced with simple filter functions and
logical operators. Using simple filters and logical operators, the same effect can be achieved at a much lower CPU
load.

Example 11.17. Optimizing regular expressions in filters
Suppose you need a filter that matches the following error message logged by the xntpd NTP daemon:

xntpd[1567]: time error -1159.777379 is too large (set clock manually);

The following filter uses regular expressions and matches every instance and variant of this message.

filter f_demo_regexp {
program("demo_program") and
match("time error .* is too large .* set clock manually"); };

Segmenting the match() part of this filter into separate match() functions greatly improves the performance of the filter.

filter f_demo_optimized_regexp {
program("demo_program") and
match("time error") and
match("is too large") and
match("set clock manually"); };

232www.balabit.com

Optimizing regular expressions

Chapter 12. Parsing and segmenting structured
messages

The filters and default macros of syslog-ng work well on the headers and metainformation of the log messages, but
are rather limited when processing the content of the messages. Parsers can segment the content of the messages
into name-value pairs, and these names can be used as user-defined macros. Subsequent filtering or other type of
processing of the message can use these custom macros to refer to parts of the message. Parsers are global objects
most often used together with filters and rewrite rules.

syslog-ng OSE provides the following possibilities to parse the messages, or parts of the messages:

■ By default, syslog-ng OSE parses every message as a syslog message. To disable message parsing, use
the flags(no-parse) option of the source. To explicitly parse a message as a syslog message, use
the syslog parser. For details, see Section 12.1, Parsing syslog messages (p. 233).

■ To segment a message into columns using a CSV-parser, see Section 12.2, Parsing messages (p. 234).

■ To parse JSON-formatted messages, see Section 12.3, The JSON parser (p. 237).

■ To identify and parse the messages using a pattern database, see Chapter 13, Processing message content with
a pattern database (p. 240).

12.1. Parsing syslog messages

By default, syslog-ng OSE parses every message using the syslog-parser as a syslog message, and fills the
macros with values of the message. The syslog-parser does not discard messages: the message cannot be parsed
as a syslog message, the entire message (including its header) is stored in the $MSG macro. If you do not want to
parse the message as a syslog message, use the flags(no-parse) option of the source.

Example 12.1. Using junctions
For example, suppose that you have a single network source that receives log messages from different devices, and some
devices send messages that are not RFC-compliant (some routers are notorious for that). To solve this problem in earlier
versions of syslog-ng OSE, you had to create two different network sources using different IP addresses or ports: one that
received the RFC-compliant messages, and one that received the improperly formatted messages (for example, using the
flags(no-parse) option). Using junctions this becomes much more simple: you can use a single network source to receive
every message, then use a junction and two channels. The first channel processes the RFC-compliant messages, the second
everything else. At the end, every message is stored in a single file. The filters used in the example can be host() filters (if
you have a list of the IP addresses of the devices sending non-compliant messages), but that depends on your environment.

log {
source s_network { syslog(ip(10.1.2.3) transport("tcp")); flags(no-parse); };
junction {

channel { filter(f_compliant_hosts); parser { syslog-parser(); }; };
channel { filter(f_noncompliant_hosts); };

};
destination { file("/var/log/messages"); };

};

Since every channel receives every message that reaches the junction, use the flags(final) option in the channels to avoid
the unnecessary processing the messages multiple times:

log {
source s_network { syslog(ip(10.1.2.3) transport("tcp")); flags(no-parse); };
junction {

channel { filter(f_compliant_hosts); parser { syslog-parser(); }; flags(final);

233www.balabit.com

Parsing syslog messages

};
channel { filter(f_noncompliant_hosts); flags(final); };

};
destination { file("/var/log/messages"); };

};

12.2. Parsing messages

The syslog-ng application can separate parts of log messages (that is, the contents of the $MSG macro) to named
fields (columns). These fields act as user-defined macros that can be referenced in message templates, file- and
tablenames, and so on.

Parsers are similar to filters: they must be defined in the syslog-ng configuration file and used in the log statement.

Note
The order of filters, rewriting rules, and parsers in the log statement is important, as they are processed sequentially.

To create a parser, define the columns of the message, the delimiter or separator characters (for example, semicolon
or tabulator), and optionally the characters that are used to escape the delimiter characters (quote-pairs). For the
list of parser parameters, see Section 12.2.1, Options of CSV parsers (p. 235).

Declaration:
parser parser_name {
csv-parser(column1, column2, ...)
delimiters()
quote-pairs()
};

Column names work like macros. Always use a prefix to identify the columns of the parsers, for example
MYPARSER1.COLUMN1, MYPARSER2.COLUMN2, and so on. Column names starting with a dot (for example
.HOST) are reserved for use by syslog-ng.

Example 12.2. Segmenting hostnames separated with a dash
The following example separates hostnames like example-1 and example-2 into two parts.

parser p_hostname_segmentation {
csv-parser(columns("HOSTNAME.NAME", "HOSTNAME.ID")
delimiters("-")
flags(escape-none)
template("${HOST}"));

};
destination d_file { file("/var/log/messages-${HOSTNAME.NAME:-examplehost}"); };
log { source(s_local); parser(p_hostname_segmentation); destination(d_file);};

Example 12.3. Parsing Apache log files
The following parser processes the log of Apache web servers and separates them into different fields. Apache log messages
can be formatted like:

"%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" %T %v"

Here is a sample message:

234www.balabit.com

Parsing messages

192.168.1.1 - - [31/Dec/2007:00:17:10 +0100] "GET /cgi-bin/example.cgi HTTP/1.1" 200 2708
"-" "curl/7.15.5 (i4 86-pc-linux-gnu) libcurl/7.15.5 OpenSSL/0.9.8c zlib/1.2.3 libidn/0.6.5"
2 example.balabit

To parse such logs, the delimiter character is set to a single whitespace (delimiters(" ")). Whitespaces between quotes
and brackets are ignored (quote-pairs('""[]')).

parser p_apache {
csv-parser(columns("APACHE.CLIENT_IP", "APACHE.IDENT_NAME", "APACHE.USER_NAME",

"APACHE.TIMESTAMP", "APACHE.REQUEST_URL", "APACHE.REQUEST_STATUS",
"APACHE.CONTENT_LENGTH", "APACHE.REFERER", "APACHE.USER_AGENT",
"APACHE.PROCESS_TIME", "APACHE.SERVER_NAME")
flags(escape-double-char,strip-whitespace)
delimiters(" ")
quote-pairs('""[]')
);

};

The results can be used for example to separate log messages into different files based on the APACHE.USER_NAME field.
If the field is empty, the nouser name is assigned.

log { source(s_local);
parser(p_apache); destination(d_file);};

};
destination d_file { file("/var/log/messages-${APACHE.USER_NAME:-nouser}"); };

Multiple parsers can be used to split a part of an already parsed message into further segments.

Example 12.4. Segmenting a part of a message
The following example splits the timestamp of a parsed Apache log message into separate fields.

parser p_apache_timestamp {
csv-parser(columns("APACHE.TIMESTAMP.DAY", "APACHE.TIMESTAMP.MONTH",

"APACHE.TIMESTAMP.YEAR", "APACHE.TIMESTAMP.HOUR", "APACHE.TIMESTAMP.MIN",
"APACHE.TIMESTAMP.MIN", "APACHE.TIMESTAMP.ZONE")

delimiters("/: ")
flags(escape-none)
template("${APACHE.TIMESTAMP}"));
};

log { source(s_local);
log { parser(p_apache); parser(p_apache_timestamp); destination(d_file);};

};

Further examples:

■ For an example on using the greedy option, see Example 12.5, Adding the end of the message to the last
column (p. 237).

12.2.1. Options of CSV parsers

The syslog-ng application can separate parts of log messages (that is, the contents of the ${MSG} macro) to named
fields (columns). These fields act as user-defined macros that can be referenced in message templates, file- and
tablenames, and so on.

To create a parser, define the columns of the message, the delimiter or separator characters, and optionally the
characters that are used to escape the delimiter characters (quote-pairs).

Declaration:
parser parser_name {

235www.balabit.com

Options of CSV parsers

csv-parser(column1, column2, ...)
delimiters()
quote-pairs()

};

Column names work like macros. Always use a prefix to identify the columns of the parsers, for example
MYPARSER1.COLUMN1, MYPARSER2.COLUMN2, and so on. Column names starting with a dot (for example
.HOST) are reserved for use by syslog-ng.

csv-parser
csv-parser(columns("PARSER.COLUMN1", "PARSER.COLUMN2", ...))Synopsis:

Description: Specifies the type of parser to use, and the name of the columns to separate messages to. Currently
only the csv-parser is implemented, which can separate columns based on delimiter characters and strings.

delimiters
delimiters("<delimiter_characters>")Synopsis:

Description: The character that separates the columns in the message. If you specify multiple characters, every
character will be treated as a delimiter. To separate the columns at the tabulator (tab character), specify \t. For
example, to separate the text at evert hyphen (-) and colon (:) character, use delimiters("-:")

flags()
drop-invalid, escape-none, escape-backslash, escape-double-char, greedy, strip-whitespaceSynopsis:

Description: Specifies various options for parsing the message. The following flags are available:

■ drop-invalid: When the drop-invalid option is set, the parser does not process messages that do not
match the parser. For example, a message does not match the parser if it has less columns than specified
in the parser, or it has more columns but the greedy flag is not enabled. Using the drop-invalid
option practically turns the parser into a special filter, that matches messages that have the predefined
number of columns (using the specified delimiters).

Tip
Messages dropped as invalid can be processed by a fallback log path. For details on the fallback option,
see Section 8.1.3, Log path flags (p. 177).

■ escape-backslash: The parsed message uses the backslash (\) character to escape quote characters.

■ escape-double-char: The parsed message repeats the quote character when the quote character is used literally.
For example, to escape a comma (,), the message contains two commas (,,).

■ escape-none: The parsed message does not use any escaping for using the quote character literally.

236www.balabit.com

Options of CSV parsers

■ greedy: The greedy option assigns the remainder of the message to the last column, regardless of the
delimiter characters set. You can use this option to process messages where the number of columns
varies.

Example 12.5. Adding the end of the message to the last column
If the greedy option is enabled, the syslog-ng application adds the not-yet-parsed part of the message to the
last column, ignoring any delimiter characters that may appear in this part of the message.

For example, you receive the following comma-separated message: example 1, example2, example3,
and you segment it with the following parser:

csv_parser(columns("COLUMN1", "COLUMN2", "COLUMN3") delimiters(","));

The COLUMN1, COLUMN2, and COLUMN3 variables will contain the strings example1, example2, and
example3, respectively. If the message looks like example 1, example2, example3, some more
information, then any text appearing after the third comma (that is, some more information) is not
parsed, and possibly lost if you use only the variables to reconstruct the message (for example, to send it to
different columns of an SQL table).

Using the greedy flag will assign the remainder of the message to the last column, so that the COLUMN1,
COLUMN2, and COLUMN3 variables will contain the strings example1, example2, and example3, some
more information.

csv_parser(columns("COLUMN1", "COLUMN2", "COLUMN3") delimiters(",")
flags(greedy));

■ strip-whitespace: The strip-whitespace flag removes trailing whitespaces from the beginning and the
end of the columns.

quote-pairs()
quote-pairs('<quote_pairs>')Synopsis:

Description: List quote-pairs between single quotes. Delimiter characters enclosed between quote characters are
ignored. Note that the beginning and ending quote character does not have to be identical, for example [} can also
be a quote-pair. For an example of using quote-pairs() to parse Apache log files, see Example 12.3, Parsing
Apache log files (p. 234).

template()
template("${<macroname>}")Synopsis:

Description: The macro that contains the part of the message that the parser will process. It can also be a macro
created by a previous parser of the log path. By default, this is empty and the parser processes the entire message.
For examples, see Example 12.2, Segmenting hostnames separated with a dash (p. 234) and Example 12.4, Segmenting a part
of a message (p. 235).

12.3. The JSON parser

JavaScript Object Notation (JSON) is a text-based open standard designed for human-readable data interchange.
It is used primarily to transmit data between a server and web application, serving as an alternative to XML. It is
described in RFC 4627. The syslog-ng application can separate parts of JSON-encoded log messages to name-value
pairs, using json-c.

237www.balabit.com

The JSON parser

http://tools.ietf.org/html/rfc4627

Note
The JSON parser currently supports only integer, double and string values when interpreting JSON structures. As syslog-ng
does not handle different data types internally, the JSON parser converts all JSON data to string values. In case of boolean
types, the value is converted to 'TRUE' or 'FALSE' as their string representation.

The JSON parser discards messages if it cannot parse them as JSON messages, so it acts as a JSON-filter as well.

To create a parser, define the parser name, the parser itself. Defining the prefix and the marker are optional.

Declaration:
parser parser_name {

json-parser(
marker()
prefix()

);
};

Example 12.6. Using a JSON parser
In the following example, the source is a JSON encoded log message. The syslog parser is disabled, so that the syslog-ng does
not parse the message: flags(no-parse). The json-parser inserts ".json." before all extracted name-value pairs. The
destination is a file, that uses the JSON template function. Here, the dot-nv-pairs are written, that include name-value pairs
beginning with a dot ("."). The log line connects the source, the destination and the parser.

source s_json {
tcp(port(21514) flags(no-parse));

};

destination d_json {
file("/tmp/test.json"

template("$(format-json --scope dot-nv-pairs)\n"));
};

parser p_json {
json-parser (prefix(".json."));

};

log {
source(s_json);
parser(p_json);
destination(d_json);

};

marker
marker()Synopsis:

Description: Use a marker in case of mixed log messages, to identify JSON encoded messages for the parser.

Some logging implementations require a marker to be set before the JSON payload. The JSON parser is able to
find these markers and parse the message only if it is present.

Example 12.7. Using the marker option in JSON parser
This json parser parses log messages which use the "@cee:" marker in front of the json payload. It inserts ".cee." in front of
the name of name-value pairs, so later on it is easier to find name-value pairs that were parsed using this parser.

parser {
json-parser(

marker("@cee:")

238www.balabit.com

marker

prefix(".cee.")
);

};

prefix
prefix()Synopsis:

Description: The prefix inserts a prefix before the name part of the name-value pairs to facilitate further processing.

239www.balabit.com

prefix

Chapter 13. Processing message content with a pattern
database

13.1. Classifying log messages

The syslog-ng application can compare the contents of the received log messages to predefined message patterns.
By comparing the messages to the known patterns, syslog-ng is able to identify the exact type of the messages, and
sort them into message classes. The message classes can be used to classify the type of the event described in the
log message. The message classes can be customized, and for example can label the messages as user login, application
crash, file transfer, and so on events.

To find the pattern that matches a particular message, syslog-ng uses a method called longest prefix match radix
tree. This means that syslog-ng creates a tree structure of the available patterns, where the different characters
available in the patterns for a given position are the branches of the tree.

To classify a message, syslog-ng selects the first character of the message (the text of message, not the header), and
selects the patterns starting with this character, other patterns are ignored for the rest of the process. After that,
the second character of the message is compared to the second character of the selected patterns. Again, matching
patterns are selected, and the others discarded. This process is repeated until a single pattern completely matches
the message, or no match is found. In the latter case, the message is classified as unknown, otherwise the class of
the matching pattern is assigned to the message.

To make the message classification more flexible and robust, the patterns can contain pattern parsers: elements
that match on a set of characters. For example, the NUMBER parser matches on any integer or hexadecimal number
(for example 1, 123, 894054, 0xFFFF, and so on). Other pattern parsers match on various strings and IP addresses.
For the details of available pattern parsers, see Section 13.5.1, Using pattern parsers (p. 250).

The functionality of the pattern database is similar to that of the logcheck project, but it is much easier to write and
maintain the patterns used by syslog-ng, than the regular expressions used by logcheck. Also, it is much easier to
understand syslog-ng pattens than regular expressions.

Pattern matching based on regular expressions is computationally very intensive, especially when the number of
patterns increases. The solution used by syslog-ng can be performed real-time, and is independent from the number
of patterns, so it scales much better. The following patterns describe the same message: Accepted password
for bazsi from 10.50.0.247 port 42156 ssh2

A regular expression matching this message from the logcheck project: Accepted
(gssapi(-with-mic|-keyex)?|rsa|dsa|password|publickey|keyboard-interactive/pam)
for [^[:space:]]+ from [^[:space:]]+ port [0-9]+((ssh|ssh2))?

A syslog-ng database pattern for this message: Accepted @QSTRING:auth_method: @
for@QSTRING:username: @from @QSTRING:client_addr: @port @NUMBER:port:@ ssh2

For details on using pattern databases to classify log messages, see Section 13.2, Using pattern databases (p. 243).

240www.balabit.com

Classifying log messages

13.1.1. The structure of the pattern database

The pattern database is organized as follows:

Figure 13.1. The structure of the pattern database

■ The pattern database consists of rulesets. A ruleset consists of a Program Pattern and a set of rules: the
rules of a ruleset are applied to log messages if the name of the application that sent the message matches
the Program Pattern of the ruleset. The name of the application (the content of the ${PROGRAM}
macro) is compared to the Program Patterns of the available rulesets, and then the rules of the matching
rulesets are applied to the message.

■ The Program Pattern can be a string that specifies the name of the appliation or the beginning of its
name (for example, to match for sendmail, the program pattern can be sendmail, or just send), and the
Program Pattern can contain pattern parsers. Note that pattern parsers are completely independent from
the syslog-ng parsers used to segment messages. Additionally, every rule has a unique identifier: if a
message matches a rule, the identifier of the rule is stored together with the message.

■ Rules consist of a message pattern and a class. The Message Pattern is similar to the Program Pattern,
but is applied to the message part of the log message (the content of the ${MESSAGE} macro). If a
message pattern matches the message, the class of the rule is assigned to the message (for example,
Security, Violation, and so on).

■ Rules can also contain additional information about the matching messages, such as the description of
the rule, an URL, name-value pairs, or free-form tags.

■ Patterns can consist of literals (keywords, or rather, keycharacters) and pattern parsers.

Note
If the ${PROGRAM} part of a message is empty, rules with an empty Program Pattern are used to classify
the message.

If the same Program Pattern is used in multiple rulesets, the rules of these rulesets are merged, and every rule
is used to classify the message. Note that message patterns must be unique within the merged rulesets, but the
currently only one ruleset is checked for uniqueness.

241www.balabit.com

The structure of the pattern database

13.1.2. How pattern matching works

Figure 13.2. Applying patterns

The followings describe how patterns work. This information applies to program patterns and message patterns
alike, even though message patterns are used to illustrate the procedure.

Patterns can consist of literals (keywords, or rather, keycharacters) and pattern parsers. Pattern parsers attempt to
parse a sequence of characters according to certain rules.

Note
Wildcards and regular expressions cannot be used in patterns. The @ character must be escaped, that is, to match for this
character, you have to write @@ in your pattern. This is required because pattern parsers of syslog-ng are enclosed between @
characters.

When a new message arrives, syslog-ng attempts to classify it using the pattern database. The available patterns are
organized alphabetically into a tree, and syslog-ng inspects the message character-by-character, starting from the
beginning. This approach ensures that only a small subset of the rules must be evaluated at any given step, resulting
in high processing speed. Note that the speed of classifying messages is practically independent from the total
number of rules.

For example, if the message begins with the Apple string, only patterns beginning with the character A are considered.
In the next step, syslog-ng selects the patterns that start with Ap, and so on, until there is no more specific pattern
left.

Note that literal matches take precedence over pattern parser matches: if at a step there is a pattern that matches
the next character with a literal, and another pattern that would match it with a parser, the pattern with the literal
match is selected. Using the previous example, if at the third step there is the literal pattern Apport and a pattern
parser Ap@STRING@, the Apport pattern is matched. If the literal does not match the incoming string (foe example,
Apple), syslog-ng attempts to match the pattern with the parser. However, if there are two or more parsers on the
same level, only the first one will be applied, even if it does not perfectly match the message.

If there are two parsers at the same level (for example, Ap@STRING@ and Ap@QSTRING@), it is random which
pattern is applied (technically, the one that is loaded first). However, if the selected parser cannot parse at least one
character of the message, the other parser is used. But having two different parsers at the same level is extremely
rare, so the impact of this limitation is much less than it appears.

13.1.3. Artificial ignorance

Artificial ignorance is a method to detect anomalies. When applied to log analysis, it means that you ignore the
regular, common log messages - these are the result of the regular behavior of your system, and therefore are not
too interesting. However, new messages that have not appeared in the logs before can sign important events, and

242www.balabit.com

How pattern matching works

should be therefore investigated. "By definition, something we have never seen before is anomalous" (Marcus J.
Ranum).

The syslog-ng application can classify messages using a pattern database: messages that do not match any pattern
are classified as unknown. This provides a way to use artificial ignorance to review your log messages. You can
periodically review the unknown messages — syslog-ng can send them to a separate destination - and add patterns
for them to the pattern database. By reviewing and manually classifying the unknown messages, you can iteratively
classify more and more messages, until the only the really anomalous messages show up as unknown.

Obviously, for this to work, a large number of message patterns are required. The radix-tree matching method used
for message classification is very effective, can be performed very fast, and scales very well; basically the time
required to perform a pattern matching is independent from the number of patterns in the database.

To simplify the building of pattern databases, BalaBit has released (and will continue to release) sample databases.
Currently the sample pattern databases are available at the BalaBit Download page.

13.2. Using pattern databases

To classify messages using a pattern database, include a db_parser() statement in your syslog-ng configuration
file using the following syntax:

Declaration:
parser <identifier> {db_parser(file("<database_filename>"));};

Note that using the parser in a log statement only performs the classification, but does not automatically do anything
with the results of the classification.

Example 13.1. Defining pattern databases
The following statement uses the database located at /opt/syslog-ng/var/db/patterndb.xml.

parser pattern_db {
db_parser(

file("/opt/syslog-ng/var/db/patterndb.xml")
);
};

To apply the patterns on the incoming messages, include the parser in a log statement:

log {
source(s_all);
parser(pattern_db);
destination(di_messages_class);
};

Note
The default location of the pattern database file is /opt/syslog-ng/var/run/patterndb.xml. The file option of
the db-parser statement can be used to specify a different file, thus different db-parser statements can use different pattern
databases. Later versions of syslog-ng will be able to dynamically generate a main database from separate pattern database
files.

243www.balabit.com

Using pattern databases

http://www.balabit.com/downloads/files/patterndb-snapshot/

Example 13.2. Using classification results
The following destination separates the log messages into different files based on the class assigned to the pattern that matches
the message (for example Violation and Security type messages are stored in a separate file), and also adds the ID of the
matching rule to the message:

destination di_messages_class {
file("/var/log/messages-${.classifier.class}"

template("${.classifier.rule_id};${S_UNIXTIME};${SOURCEIP};${HOST};${PROGRAM};${PID};${MSG}\n")

template_escape(no)
);

};

For details on how to create your own pattern databases see Section 13.5.3, The syslog-ng pattern database format (p. 253).

13.2.1. Using parser results in filters and templates

The results of message classification and parsing can be used in custom filters and file and database templates as
well. There are two built-in macros in syslog-ng OSE that allow you to use the results of the classification: the
.classifier.class macro contains the class assigned to the message (for example violation, security, or
unknown), while the .classifier.rule_id macro contains the identifier of the message pattern that matched
the message.

Example 13.3. Using classification results for filtering messages
To filter on a specific message class, create a filter that checks the .classifier_class macro, and use this filter in a log statement.

filter fi_class_violation {
match("violation"
value(".classifier.class")
type("string")
);
};

log {
source(s_all);
parser(pattern_db);
filter(fi_class_violation);
destination(di_class_violation);
};

Filtering on the unknown class selects messages that did not match any rule of the pattern database. Routing these messages
into a separate file allows you to periodically review new or unknown messages.

To filter on messages matching a specific classification rule, create a filter that checks the .classifier.rule_id macro. The
unique identifier of the rule (for example e1e9c0d8-13bb-11de-8293-000c2922ed0a) is the id attribute of the rule in
the XML database.

filter fi_class_rule {
match("e1e9c0d8-13bb-11de-8293-000c2922ed0a"
value(".classifier.rule_id")
type("string")
);
};

Pattern database rules can assign tags to messages. These tags can be used to select tagged messages using the
tags() filter function.

244www.balabit.com

Using parser results in filters and templates

Note
Starting with version 3.2, syslog-ng OSE automatically adds the class of the message as a tag using the
.classifier.<message-class> format. For example, messages classified as "system" receive the .classifier.system
tag. Use the tags() filter function to select messages of a specific class.

filter f_tag_filter {tags(".classifier.system");};

The message-segments parsed by the pattern parsers can also be used as macros as well. To accomplish this, you
have to add a name to the parser, and then you can use this name as a macro that refers to the parsed value of the
message.

Example 13.4. Using pattern parsers as macros
For example, you want to parse messages of an application that look like "Transaction: <type>.", where <type> is a
string that has different values (for example refused, accepted, incomplete, and so on). To parse these messages, you can use
the following pattern:

'Transaction: @ESTRING::.@'

Here the @ESTRING@ parser parses the message until the next full stop character. To use the results in a filter or a filename
template, include a name in the parser of the pattern, for example:

'Transaction: @ESTRING:TRANSACTIONTYPE:.@'

After that, add a custom template to the logpath that uses this template. For example, to select every accepted transaction,
use the following custom filter in the log path:

match("accepted" value("TRANSACTIONTYPE"));

Note
The above macros can be used in database columns and filename templates as well, if you create custom templates for the
destination or logspace.

Use a consistent naming scheme for your macros, for example, APPLICATIONNAME_MACRONAME.

13.2.2. Downloading sample pattern databases

Sample pattern databases are available at the BalaBit Download page. Note that even though these pattern databases
contain over 8000 rules for more than 200 applications and devices, they are only samples and experimental databases
that are not officially supported and may or may not work in your environment.

The syslog-ng pattern databases are available under the Creative Commons Attribution-Share Alike 3.0 (CC by-SA)
license. This includes every pattern database written by community contributors or the BalaBit staff. It means that:

■ you are free to use and modify the patterns purposes;

■ when redistributing the pattern databases you must distribute your modifications under the same license;

■ and when redistributing the pattern databases, you must make it obvious that the original syslog-ng
pattern databases are available here.

For legal details, the full text of the license is available here.

245www.balabit.com

Downloading sample pattern databases

http://www.balabit.com/downloads/files/patterndb-snapshot/
http://www.balabit.com/network-security/syslog-ng/
http://creativecommons.org/licenses/by-sa/3.0/us/legalcode

13.3. Correlating log messages

Starting with version 3.2, the syslog-ng OSE application is able to correlate log messages identified using pattern
databases.

Log messages are supposed to describe events, but applications often separate information about a single event
into different log messages. For example, the Postfix e-mail server logs the sender and recipient addresses into
separate log messages, or in case of an unsuccessful login attempt, the OpenSSH server sends a log message about
the authentication failure, and the reason of the failure in the next message.

Of course, messages that are not so directly related can be correlated as well, for example, login-logout messages,
and so on.

To correlate log messages, syslog-ng OSE uses the pattern database to add messages into message-groups called
contexts. A context consists of a series of log messages that are related to each other in some way, for example,
the log messages of an SSH session can belong to the same context. As new messages come in, they may be added
to a context. Also, when an incoming message is identified it can trigger actions to be performed, for example,
generate a new message that contains all the important information that was stored previously in the context. (For
details on triggering actions and generating messages, see Section 13.4, Triggering actions for identified messages (p. 247).)

There are two attributes for pattern database rules that determine if a message matching the rule is added to a
context: context-scope and context-id. The context-scope attribute acts as an early filter, selecting
messages sent by the same process (${HOST}${PROGRAM}${PID} is identical), application
(${HOST}${PROGRAM} is identical), or host, while the context-id actually adds the message to the context
specified in the id. The context-id can be a simple string, or can contain macros or values extracted from the
log messages for further filtering.

Note
Message contexts are persistent and are not lost when syslog-ng OSE is reloaded (SIGHUP), but are lost when syslog-ng
OSE is restarted.

Another parameter of a rule is the context-timeout attribute, which determines how long a context is stored,
that is, how long syslog-ng OSE waits for related messages to arrive. Note the following points about timeout
values:

■ When a new message is added to a context, syslog-ng OSE will restart the timeout using the
context-timeout set for the new message.

■ When calculating if the timeout has already expired or not, syslog-ng OSE uses the timestamps of the
incoming messages, not system time elapsed between receiving the two messages (unless the messages
do not include a timestamp, or the keep-timestamp(no) option is set). That way syslog-ng OSE can
be used to process and correlate already existing log messages offline. However, the timestamps of the
messages must be in chronological order (that is, a new message cannot be older than the one already
processed), and if a message is newer than the current system time (that is, it seems to be coming from
the future), syslog-ng OSE will replace its timestamp with the current system time.

246www.balabit.com

Correlating log messages

Example 13.5. How syslog-ng OSE calculates context-timeout
Consider the following two messages:

<38>1990-01-01T14:45:25 customhostname program6[1234]: program6 testmessage
<38>1990-01-01T14:46:25 customhostname program6[1234]: program6 testmessage

If the context-timeout is 10 seconds and syslog-ng OSE receives the messages within 1 sec, the timeout
event will occour immediately, because the difference of the two timestamp (60 sec) is larger than the timeout
value (10 sec).

■ Avoid using unnecessarily long timeout values on high-traffic systems, as storing the contexts for many
messages can require considerable memory. For example, if two related messages usually arrive within
seconds, it is not needed to set the timeout to several hours.

Example 13.6. Using message correlation

<rule xml:id="..." context-id="ssh-session" context-timeout="86400" context-scope="process">

<patterns>
<pattern>Accepted @ESTRING:usracct.authmethod: @for @ESTRING:usracct.username:

@from @ESTRING:usracct.device: @port @ESTRING:: @@ANYSTRING:usracct.service@</pattern>
</patterns>

...
</rule>

For details on configuring message correlation, see the description of the context-id, context-timeout, and context-scope
attributes of pattern database rules.

13.3.1. Referencing earlier messages of the context

When using the <value> element in pattern database rules together with message correlation, you can also refer
to f ie lds and values of ear l ier messages of the context by adding the
@<distance-of-referenced-message-from-the-current> suffix to the macro. For example, if there
are three log messages in a context, and you are creating a generated message for the third log message, the
${HOST}@1 expression refers to the host field of the current (third) message in the context, the ${HOST}@2
expression refers to the host field of the previous (second) message in the context, ${PID}@3 to the PID of the
first message, and so on. For example, the following message can be created from SSH login/logout messages (for
details on generating new messages, see Section 13.4, Triggering actions for identified messages (p. 247)): An SSH session
for ${SSH_USERNAME}@1 from ${SSH_CLIENT_ADDRESS}@2 closed. Session lasted from
${DATE}@2 to ${DATE}.

13.4. Triggering actions for identified messages

Starting with version 3.2, the syslog-ng OSE application is able to generate (trigger) messages automatically if certain
events occur, for example, a specific log message is received, or the correlation timeout of a message expires.
Basically, you can define messages for every pattern database rule that are emitted when a message matching the
rule is received. Triggering messages is often used together with message correlation, but can also be used separately.

The generated message is injected into the same place where the db_parser statement is referenced in the log
path. To post the generated message into the internal() source instead, use the inject-mode() option in
the definition of the parser.

247www.balabit.com

Referencing earlier messages of the context

Example 13.7. Sending triggered messages to the internal() source
To send the generated messages to the internal source, use the inject_mode(internal) option:

parser p_db {db_parser(
file("mypatterndbfile.xml")
inject_mode(internal)

);};

To inject the generated messages where the pattern database is referenced, use the inject_mode(pass-through) option:

parser p_db {db_parser(
file("mypatterndbfile.xml")
inject_mode(pass-through)

);};

Note
Version 3.2 of syslog-ng OSE was able to send the generated messages only to the internal source.

The generated message must be configured in the pattern database rule. It is possible to create an entire message,
use macros and values extracted from the original message with pattern database, and so on.

Example 13.8. Generating messages for pattern database matches
When inserted in a pattern database rule, the following example generates a message when a message matching the rule is
received.

<actions>
<action>

<message>
<values>

<value name="MESSAGE">A log message from ${HOST} matched rule number
$.classifier.rule_id</value>

</values>
</message>

</action>
</actions>

To inherit the properties and values of the triggering message, set the inherit-properties attribute of the
<message> element to TRUE. That way the triggering log message is cloned, including name-value pairs and tags.
If you set any values for the message in the <action> element, they will override the values of the original message.

Example 13.9. Generating messages with inherited values
The following action generates a message that is identical to the original message, but its $PROGRAM field is set to
overriding-original-program-name

<actions>
<action>

<message inherit-properties='TRUE'>
<values>

<value name="PROGRAM">overriding-original-program-name</value>
</values>

</message>
</action>

</actions>

For details on configuring actions, see the description of the pattern database format.

248www.balabit.com

Triggering actions for identified messages

13.4.1. Conditional actions

To limit when a message is triggered, use the condition attribute and specify a filter expression: the action will
be executed only if the condition is met. For example, the following action is executed only if the message was sent
by the host called myhost.

<action condition="'${HOST}' == 'example'">

The following action can be used to log the length of an SSH session (the time difference between a login and a
logout message in the context):

<actions>
<action>

<message>
<values>

<value name="MESSAGE">An SSH session for ${SSH_USERNAME}@1 from
${SSH_CLIENT_ADDRESS}@2 closed. Session lasted from ${DATE}@2 ${DATE} </value>

</values>
</message>

</action>
</actions>

Example 13.10. Actions based on the number of messages
The following example triggers different actions based on the number of messages in the context. This way you can check if
the context contains enough messages for the event to be complete, and execute a different action if it does not.

<actions>
<action condition='"$(context-length)" >= "4"'>

<message>
<values>

<value name="PROGRAM">event</value>
<value name="MESSAGE">Event complete</value>

</values>
</message>

</action>
<action condition='"$(context-length)" < "4"'>

<message>
<values>

<value name="PROGRAM">error</value>
<value name="MESSAGE">Error detected</value>
</values>

</message>
</action>

</actions>

13.4.2. External actions

To perform an external action when a message is triggered, for example, to send the message in an e-mail, you have
to route the generated messages to an external application using the program() destination.

Example 13.11. Sending triggered messages to external applications
The following sample configuration selects the triggered messages and sends them to an external script.

1. Set a field in the triggered message that is easy to identify and filter. For example:

<values>
<value name="MESSAGE">A log message from ${HOST} matched rule number

$.classifier.rule_id</value>

249www.balabit.com

Conditional actions

<value name="TRIGGER">yes</value>
</values>

2. Create a destination that will process the triggered messages.

destination d_triggers { program("/bin/myscript";); };

3. Create a filter that selects the triggered messages from the internal source.

filter f_triggers {match("yes" value ("TRIGGER") type(string));};

4. Create a logpath that selects the triggered messages from the internal source and sends them to the script:

log { source(s_local); filter(f_triggers); destination(d_triggers); };

5. Create a script that will actually process the generated messages, for example:

#!/usr/bin/perl
while (<>) {

body of the script to send emails, snmp traps, and so on
}

13.4.3. Actions and message correlation

Certain features of generating messages can be used only if message correlation is used as well.

■ The syslog-ng OSE application automatically fills the fields for the generated message based on the
scope of the context, for example, the HOST and PROGRAM fields if the context-scope is program.

■ When used together with message correlation, you can also refer to fields and values of earlier messages
of the context by adding the @<distance-of-referenced-message-from-the-current> suffix
to the macro. For details, see Section 13.3.1, Referencing earlier messages of the context (p. 247).

■ It is possible to generate a message when the context-timeout of the original message expires and
no new message is added to the context during this time. To accomplish this, include the
trigger="timeout" attribute in the action element:

<action trigger="timeout">

For details on correlating messages, see Section 13.3, Correlating log messages (p. 246).

13.5. Creating pattern databases

13.5.1. Using pattern parsers

Pattern parsers attempt to parse a part of the message using rules specific to the type of the parser. Parsers are
enclosed between @ characters. The syntax of parsers is the following:

■ a beginning @ character;

■ the type of the parser written in capitals;

■ optionally a name;

■ parameters of the parser, if any;

■ a closing @ character.

250www.balabit.com

Actions and message correlation

Example 13.12. Pattern parser syntax
A simple parser:

@STRING@

A named parser:

@STRING:myparser_name@

A named parser with a parameter:

@STRING:myparser_name:*@

A parser with a parameter, but without a name:

@STRING::*@

Patterns and literals can be mixed together. For example, to parse a message that begins with the Host: string
followed by an IP address (for example, Host: 192.168.1.1), the following pattern can be used: Host:@IPv4@.

Note
Note that using parsers is a CPU-intensive operation. Use the ESTRING and QSTRING parsers whenever possible, as these
can be processed much faster than the other parsers.

Example 13.13. Using the STRING and ESTRING parsers
For example, if the message is user=joe96 group=somegroup, @STRING:mytext:@ parses only to the first
non-alphanumeric character (=), parsing only user. @STRING:mytext:=@ parses the equation mark as well, and proceeds
to the next non-alphanumeric character (the whitespace), resulting in user=joe96 being parsed. @STRING:mytext:= @
will parse the whitespace as well, and proceed to the next non-alphanumeric non-equation mark non-whitespace character,
resulting in user=joe96 group=somegroup.

Of course, usually it is better to parse the different values separately, like this: "user=@STRING:user@
group=@STRING:group@".

If the username or the group may contain non-alphanumeric characters, you can either include these in the second parameter
of the parser (as shown at the beginning of this example), or use an ESTRING parser to parse the message till the next
whitespace: "user=@ESTRING:user: @group=@ESTRING:group: @".

13.5.1.1. Pattern parsers of syslog-ng OSE

The following parsers are available in syslog-ng OSE.

@ANYSTRING@
Parses everything to the end of the message; you can use it to collect everything that is not parsed specifically to a
single macro. In that sense its behavior is similar to the greedy() option of the CSV parser.

@DOUBLE@
An obsolete alias of the @FLOAT@ parser.

@EMAIL@
This parser matches an e-mail address. The parameter is a set of characters to strip from the beginning and the end
of the e-mail address. That way e-mail addresses enclosed between other characters can be matched easily (for

251www.balabit.com

Using pattern parsers

example, <user@example.com> or "user@example.com". Characters that are valid for a hostname are not
stripped from the end of the hostname. This includes a trailing period if present.

For example, the @EMAIL:email:"[<]>@ parser will match any of the following e-mail addresses:
<user@example.com>, [user@example.com], "user@example.com", and set the value of the email
macro to user@example.com.

@ESTRING@
This parser has a required parameter that acts as the stopcharacter: the parser parses everything until it finds the
stopcharacter. For example to stop by the next " (double quote) character, use @ESTRING::"@. To stop by a colon
(:), the colon has to be escaped with another colon, like: @ESTRING::::@. As of syslog-ng OSE 3.1, it is possible
to specify a stopstring instead of a single character, for example, @ESTRING::stop_here.@. The @ character
cannot be a stopcharacter, nor can line-breaks or tabs.

@FLOAT@
A floating-point number that may contain a dot (.) character. (Up to syslog-ng 3.1, the name of this parser was
@DOUBLE@.)

@HOSTNAME@
Parses a generic hostname. The hostname may contain only alphanumeric characters (A-Z,a-z,0-9), hypen (-), or
dot (.).

@IPv4@
Parses an IPv4 IP address (numbers separated with a maximum of 3 dots).

@IPv6@
Parses any valid IPv6 IP address.

@IPvANY@
Parses any IP address.

@LLADDR@
Parses a Link Layer Address in the xx:xx:xx:... form, where each xx is a 2 digit HEX number (an octet). The
parameter specifies the maximum number of octets to match and defaults to 20. The MACADDR parser is a special
wrapper using the LLADDR parser. For example, the following parser parses maximally 10 octets, and stores the
results in the link-level-address macro:

@LLADDR:link-level-address:10@

@MACADDR@
Parses the standard format of a MAC-48 address, consisting of is six groups of two hexadecimal digits, separated
by colons. For example, 00:50:fc:e3:cd:37.

@NUMBER@
A sequence of decimal (0-9) numbers (for example, 1, 0687, and so on). Note that if the number starts with the 0x
characters, it is parsed as a hexadecimal number, but only if at least one valid character follows 0x. A leading hyphen

252www.balabit.com

Using pattern parsers

(–) is accepted for non-hexadecimal numbers, but other separator characters (for example, dot or comma) are not.
To parse floating-point numbers, use the @FLOAT@ parser.

@PCRE@
Use Perl-Compatible Regular Expressions (as implemented by the PCRE library), after the identification of the
potential patterns has happened by the radix implementation.

Syntax: @PCRE:name:regexp@

@QSTRING@
Parse a string between the quote characters specified as parameter. Note that the quote character can be different
at the beginning and the end of the quote, for example: @QSTRING::"@ parses everything between two quotation
marks ("), while @QSTRING:<>@ parses from an opening bracket to the closing bracket. The @ character
cannot be a quote character, nor can line-breaks or tabs.

@SET@
Parse any combination of the specified characters until another character is found. For example, specifying a
whitespace character parses any number of whitespaces, and can be used to process paddings (for example, log
messages of the Squid application have whitespace padding after the username).

For example, the @SET:: "@ parser will parse any combination of whitespaces and double-quotes.

Available in syslog-ng OSE 3.4 and later.

@STRING@
A sequence of alphanumeric characters (0-9, A-z), not including any whitespace. Optionally, other accepted characters
can be listed as parameters (for example, to parse a complete sentence, add the whitespace as parameter, like:
@STRING:: @). Note that the @ character cannot be a parameter, nor can line-breaks or tabs.

13.5.2. What's new in the syslog-ng pattern database format V4

The V4 database format has the following differences compared to the V3 format:

■ It is now possible to specify multiple program patterns for a ruleset. For details, see the description of
the patterns tag.

■ The <value> element of name-value pairs can include template functions. For details, see Section 11.1.6,
Using template functions (p. 220), for examples, see Section if (p. 222).

■ It is now possible to correlate log messages processed with the pattern database. For details, see Section
13.3, Correlating log messages (p. 246).

■ It is now possible to generate new messages based on pattern matching and correlation results. For
details, see Section 13.4, Triggering actions for identified messages (p. 247) and the description of the actions tag.

13.5.3. The syslog-ng pattern database format

Pattern databases are XML files that contain rules describing the message patterns. For sample pattern databases,
see Section 13.2.2, Downloading sample pattern databases (p. 245).

253www.balabit.com

What's new in the syslog-ng pattern database format V4

The following scheme describes the V4 format of the pattern database. This format is used by syslog-ng OSE 3.2
and later, and is backwards-compatible with the earlier V3 format.

For a sample database containing only a single pattern, see Example 13.14, A V4 pattern database containing a single
rule (p. 259).

Tip
Use the pdbtool utility that is bundled with syslog-ng to test message patterns and convert existing databases to the latest
format. For details, see pdbtool(1) (p. 279).

To automatically create an initial pattern database from an existing log file, use the pdbtool patternize command. For
details, see the section called “The patternize command” (p. 282).

■ <patterndb>: The container element of the pattern database. For example:

<patterndb version='4' pub_date='2010-10-25'>

■ version: The schema version of the pattern database. The current version is 4.

■ pubdate: The publication date of the XML file.

■ <ruleset>: A container element to group log patterns for an application or program. For example:

<ruleset name='su' id='480de478-d4a6-4a7f-bea4-0c0245d361e1'>

A <patterndb> element may contain any number of <ruleset> elements.

• name: The name of the application. Note that the function of this attribute is to make the database
more readable, syslog-ng uses the <pattern> element to identify the applications sending log
messages.

• id: A unique ID of the application, for example, the md5 sum of the name attribute.

• description: OPTIONAL — A description of the ruleset or the application.

• url: OPTIONAL — An URL referring to further information about the ruleset or the application.

• <patterns>: A container element storing program names also called program pattern. For
example:

<patterns>
<pattern>su</pattern>

</patterns>

A <patterns> element may contain any number of <pattern> elements.

• pattern: The name of the application — syslog-ng matches this value to the ${PROGRAM} header
of the syslog message to find the rulesets applicable to the syslog message.

254www.balabit.com

The syslog-ng pattern database format

Specifying multiple patterns is useful if two or more applications have different names (that is,
different ${PROGRAM} fields), but otherwise send identical log messages.

<patterns>
<pattern>firstapplication</pattern>
<pattern>otherapplication</pattern>

</patterns>

It is not necessary to use multiple patterns if only the end of the ${PROGRAM} fields is different,
use only the beginning of the ${PROGRAM} field as the pattern. For example, the Postfix
e-mail server sends messages using different process names, but all of them begin with the postfix
string.

You can also use parsers in the program pattern if needed, and use the parsed results later. For
example: <pattern>postfix\@ESTRING:.postfix.component:[@</pattern>

Note
If the <pattern> element of a ruleset is not specified, syslog-ng OSE will use this ruleset as a fallback
ruleset: it will apply the ruleset to messages that have an empty PROGRAM header, or if none of the
program patterns matched the PROGRAM header of the incoming message.

• <rules>: A container element for the rules of the ruleset.

• <rule>: An element containing message patterns and how a message that matches these patterns
is classified. For example:

<rule provider='balabit' id='f57196aa-75fd-11dd-9bba-001e6806451b'
class='violation'>

The following example specifies attributes for correlating messages as well. For details on correlating
messages, see Section 13.3, Correlating log messages (p. 246).

<rule provider='balabit' id='f57196aa-75fd-11dd-9bba-001e6806451b'
class='violation' context-id='same-session' context-scope='process'
context-timeout='360'>

Note
If the following characters appear in the message, they must be escaped in the rule as follows:

• @: Use @@, for example user@@example.com

• <: Use <

• >: Use >

• &: Use &

The <rules> element may contain any number of <rule> elements.

• provider: The provider of the rule. This is used to distinguish between who supplied the rule; that
is, if it has been created by BalaBit, or added to the xml by a local user.

255www.balabit.com

The syslog-ng pattern database format

• id: The globally unique ID of the rule.

• class: The class of the rule — syslog-ng assigns this class to the messages matching a pattern of this
rule.

• context-id: OPTIONAL — An identifier to group related log messages when using the pattern
database to correlate events. The ID can be a descriptive string describing the events related to the
log message (for example, ssh-sessions for log messages related to SSH traffic), but can also
contain macros to generate IDs dynamically. When using macros in IDs, see also the
context-scope attribute. For details on correlating messages, see Section 13.3, Correlating log
messages (p. 246).

Note
The syslog-ng OSE application determines the context of the message after the pattern matching is
completed. This means that macros and name-value pairs created by the matching pattern database
rule can be used as context-id macros.

• context-timeout: OPTIONAL — The number of seconds the context is stored. Note that for
high-traffic logservers, storing open contexts for long time can require significant amount of
memory. For details on correlating messages, see Section 13.3, Correlating log messages (p. 246).

• context-scope: OPTIONAL — Specifies which messages belong to the same context. This attribute
is used to determine the context of the message if the context-id does not specify any macros.
Usually, context-scope acts a filter for the context, with context-id refining the filtering if
needed. The context-scope attribute has the following possible values:

• process: Only messages that are generated by the same process of a client belong to the same
context, that is, messages that have identical ${HOST}, ${PROGRAM} and ${PID} values.
This is the default behavior of syslog-ng OSE if context-scope is not specified.

• program: Messages that are generated by the same application of a client belong to the same
context, that is, messages that have identical ${HOST} and ${PROGRAM} values.

• host: Every message generated by a client belongs to the same context, only the ${HOST} value
of the messages must be identical.

• global: Every message belongs to the same context.

Note
Using the context-scope attribute is significantly faster than using macros in the context-id
attribute.

For details on correlating messages, see Section 13.3, Correlating log messages (p. 246).

256www.balabit.com

The syslog-ng pattern database format

• <patterns>: An element containing the patterns of the rule. If a <patterns> element contains
multiple <pattern> elements, the class of the <rule> is assigned to every syslog message matching
any of the patterns.

• <pattern>: A pattern describing a log message. This element is also called message pattern.
For example:

<pattern>+ ??? root-</pattern>

Note
Support for XML entities is limited, you can use only the following entities: & < >
" '. User-defined entities are not supported.

• description: OPTIONAL — A description of the pattern or the log message matching the
pattern.

• urls: OPTIONAL — An element containing one or more URLs referring to further information
about the patterns or the matching log messages.

• url: OPTIONAL — An URL referring to further information about the patterns or the
matching log messages.

• values: OPTIONAL — Name-value pairs that are assigned to messages matching the patterns,
for example, the representation of the event in the message according to the Common Event
Format (CEF) or Common Event Exchange (CEE). The names can be used as macros to
reference the assigned values.

• value: OPTIONAL — Contains the value of the name-value pair that is assigned to the
message. For example:

<value name=".classifier.outcome">/Success</value>

The <value> element of name-value pairs can include template functions. For details, see
Section 11.1.6, Using template functions (p. 220), for examples, see Section if (p. 222).

When used together with message correlation, the <value> element of name-value pairs can
include references to the values of earlier messages from the same context. For details, see
Section 13.3, Correlating log messages (p. 246).

• name: The name of the name-value pair. It can also be used as a macro to reference the assigned
value.

• examples: OPTIONAL — A container element for sample log messages that should be
recognized by the pattern. These messages can be used also to test the patterns and the parsers.

• example: OPTIONAL — A container element for a sample log message.

257www.balabit.com

The syslog-ng pattern database format

• test_message: OPTIONAL — A sample log message that should match this pattern. For
example:

<test_message program="myapplication">Content filter has been
enabled</test_message>

• program: The program pattern of the test message. For example:

<test_message program="proftpd">ubuntu
(::ffff:192.168.2.179[::ffff:192.168.2.179]) - FTP session
closed.</test_message>

• test_values: OPTIONAL — A container element to test the results of the parsers used
in the pattern.

• test_value: OPTIONAL — The expected value of the parser when matching the pattern
to the test message. For example:

<test_value name=".dict.ContentFilter">enabled</test_value>

• name: The name of the parser to test.

• actions: OPTIONAL — A container element for actions that are performed if a message is
recognized by the pattern. For details on actions, see Section 13.4, Triggering actions for identified
messages (p. 247).

• action: OPTIONAL — A container element describing an action that is performed when a
message matching the rule is received.

• condition: A syslog-ng filter expression. The action is performed only if the message matches
the filter. The filter can include macros and name-value pairs extracted from the message.
When using actions together with message-correlation, you can also use the
$(context-length) macro, which returns the number of messages in the current
context. For example, this can be used to determine if the expected number of messages
has arrived to the context: condition='"$(context-length)" >= "5"'

• rate: Specifies maximum how many messages should be generated in the specified time
period in the following format: <number-of-messages>/<period-in-seconds>.
For example: 1/60 allows 1 message per minute. Rates apply within the scope of the
context, that is, if context-scope="host" and rate="1/60", then maximum one
message is generated per minute for every host that sends a log message matching the rule.
Excess messages are dropped. Note that when applying the rate to the generated messages,
syslog-ng OSE uses the timestamps of the log messages, similarly to calculating the
context-timeout. That way rate is applied correctly even if the log messages are
processed offline.

• trigger: Specifies when the action is executed. The trigger attribute has the following
possible values:

• match: Execute the action immediately when a message matching the rule is received.

258www.balabit.com

The syslog-ng pattern database format

• timeout: Execute the action when the correlation timer (context-timeout) expires.
This is available only if actions are used together with correlating messages.

• message: A container element storing the message to be sent when the action is executed.
Currently syslog-ng OSE sends these messages to the internal() destination.

• inherit-properties: If set to TRUE, the original message that triggered the action is cloned,
including its name-value pairs and tags. For details, see Section 13.4, Triggering actions for
identified messages (p. 247).

• values: A container element for values and fields that are used to create the message
generated b the action.

• value: Sets the value of the message field specified in the name attribute of the element.
For example, to specify the body of the generated message, use the following syntax:

<value name="MESSAGE">A log message matched rule number
$.classifier.rule_id</value>

Note that currently it is not possible to add DATE, FACILITY, or SEVERITY fields
to the message.

When the action is used together with message correlation, the syslog-ng OSE application
automatically adds fields to the message based on the context-scope parameter. For
example, using context-scope="process" automatically fills the HOST,
PROGRAM, and PID fields of the generated message.

• name: Name of the message field set by the value element.

• tags: OPTIONAL — An element containing custom keywords (tags) about the messages
matching the patterns. The tags can be used to label specific events (for example user logons).
It is also possible to filter on these tags later (for details, see Section 8.3.5, Tagging messages (p. 186)).
Starting with syslog-ng Open Source Edition 3.2, the list of tags assigned to a message can be
referenced with the ${TAGS} macro.

• tag: OPTIONAL — A keyword or tags applied to messages matching the rule. For example:

<tags><tag>UserLogin</tag></tags>

Example 13.14. A V4 pattern database containing a single rule
The following pattern database contains a single rule that matches a log message of the ssh application. A sample log message
looks like:

Accepted password for sampleuser from 10.50.0.247 port 42156 ssh2

The following is a simple pattern database containing a matching rule.

<patterndb version='4' pub_date='2010-10-17'>
<ruleset name='ssh' id='123456678'>

<pattern>ssh</pattern>
<rules>

<rule provider='me' id='182437592347598' class='system'>
<patterns>

259www.balabit.com

The syslog-ng pattern database format

<pattern>Accepted @QSTRING:SSH.AUTH_METHOD: @
for@QSTRING:SSH_USERNAME: @from\ @QSTRING:SSH_CLIENT_ADDRESS: @port @NUMBER:SSH_PORT_NUMBER:@
ssh2</pattern>

</patterns>
</rule>

</rules>
</ruleset>

</patterndb>

Note that the rule uses macros that refer to parts of the message, for example, you can use the ${SSH_USERNAME} macro
refer to the username used in the connection.

The following is the same example, but with a test message and test values for the parsers.

<patterndb version='4' pub_date='2010-10-17'>
<ruleset name='ssh' id='123456678'>

<pattern>ssh</pattern>
<rules>

<rule provider='me' id='182437592347598' class='system'>
<patterns>

<pattern>Accepted @QSTRING:SSH.AUTH_METHOD: @
for@QSTRING:SSH_USERNAME: @from\ @QSTRING:SSH_CLIENT_ADDRESS: @port @NUMBER:SSH_PORT_NUMBER:@
ssh2</pattern>

</patterns>
<examples>

<example>
<test_message>Accepted password for sampleuser from 10.50.0.247

port 42156 ssh2</test_message>
<test_values>

<test_value name="SSH.AUTH_METHOD">password</test_value>
<test_value name="SSH_USERNAME">sampleuser</test_value>
<test_value

name="SSH_CLIENT_ADDRESS">10.50.0.247</test_value>
<test_value name="SSH_PORT_NUMBER">42156</test_value>

</test_values>
</example>

</examples>
</rule>

</rules>
</ruleset>

</patterndb>

260www.balabit.com

The syslog-ng pattern database format

Chapter 14. Statistics of syslog-ng

Periodically, syslog-ng sends a message containing statistics about the received messages, and about any lost messages
since the last such message. It includes a processed entry for every source and destination, listing the number of
messages received or sent, and a dropped entry including the IP address of the server for every destination where
syslog-ng has lost messages. The center(received) entry shows the total number of messages received from
every configured sources.

The following is a sample log statistics message for a configuration that has a single source (s_local) and a network
and a local file destination (d_network and d_local, respectively). All incoming messages are sent to both
destinations.

Log statistics;
dropped='tcp(AF_INET(192.168.10.1:514))=6439',
processed='center(received)=234413',
processed='destination(d_tcp)=234413',
processed='destination(d_local)=234413',
processed='source(s_local)=234413'

Log statistics can be also retrieved on-demand using one of the following options:

■ U s e t h e socat a p p l i c a t i o n : echo STATS | socat -vv
UNIX-CONNECT:/opt/syslog-ng/var/run/syslog-ng.ctl -

■ If you have an OpenBSD-style netcat application installed, use the echo STATS | nc -U
var/run/syslog-ng.ctl command. Note that the netcat included in most Linux distributions is
a GNU-style version that is not suitable to query the statistics of syslog-ng.

■ Starting from syslog-ng Open Source Edition version 3.1, syslog-ng Open Source Edition includes the
syslog-ng-ctl utility. Use the syslog-ng-ctl stats command.

The statistics include a list of source groups and destinations, as well as the number of processed messages for each.
The verbosity of the statistics can be set using the stats_level() option. For details, see Section 9.2, Global
options (p. 191). An example output is shown below.

src.internal;s_all#0;;a;processed;6445
src.internal;s_all#0;;a;stamp;1268989330
destination;df_auth;;a;processed;404
destination;df_news_dot_notice;;a;processed;0
destination;df_news_dot_err;;a;processed;0
destination;d_ssb;;a;processed;7128
destination;df_uucp;;a;processed;0
source;s_all;;a;processed;7128
destination;df_mail;;a;processed;0
destination;df_user;;a;processed;1
destination;df_daemon;;a;processed;1
destination;df_debug;;a;processed;15
destination;df_messages;;a;processed;54
destination;dp_xconsole;;a;processed;671
dst.tcp;d_network#0;10.50.0.111:514;a;dropped;5080
dst.tcp;d_network#0;10.50.0.111:514;a;processed;7128

261www.balabit.com

dst.tcp;d_network#0;10.50.0.111:514;a;stored;2048
destination;df_syslog;;a;processed;6724
destination;df_facility_dot_warn;;a;processed;0
destination;df_news_dot_crit;;a;processed;0
destination;df_lpr;;a;processed;0
destination;du_all;;a;processed;0
destination;df_facility_dot_info;;a;processed;0
center;;received;a;processed;0
destination;df_kern;;a;processed;70
center;;queued;a;processed;0
destination;df_facility_dot_err;;a;processed;0

The statistics are semicolon separated; every line contains statistics for a particular object (for example source,
destination, tag, and so on). The statistics have the following fields:

1. The type of the object (for example dst.file, tag, src.facility)

2. The ID of the object used in the syslog-ng configuration file, for example d_internal or
source.src_tcp. The #0 part means that this is the first destination in the destination group.

3. The instance ID (destination) of the object, for example the filename of a file destination, or the name
of the application for a program source or destination.

4. The status of the object. One of the following:

■ a - active. At the time of quering the statistics, the source or the destination was still alive (it
continuously received statistical data).

■ d - dynamic. Such objects may not be continuously available, for example, like statistics based on the
sender's hostname.

■ o - This object was once active, but stopped receiving messages. (For example a dynamic object may
disappear and become orphan.)

Note
The syslog-ng OSE application stores the statistics of the objects when syslog-ng OSE is reloaded. However,
if the configuration of syslog-ng OSE was changed since the last reload, the statistics of orphaned objects
are deleted.

5. The type of the statistics:

■ processed: The number of messages that successfully reached their destination driver.

■ dropped: The number of dropped messages — syslog-ng OSE could not send the messages to the
destination and the output buffer got full, so messages were dropped by the destination driver.

■ stored: The number of messages stored in the message queue of the destination driver, waiting to
be sent to the destination.

■ suppressed: The number of suppressed messages (if the suppress() feature is enabled).

■ stamp: The UNIX timestamp of the last message sent to the destination.

6. The number of such messages.

262www.balabit.com

Note
Certain statistics are available only if the stats-level() option is set to a higher value.

When receiving messages with non-standard facility values (that is, higher than 23), these messages will be listed as other
facility instead of their facility number.

263www.balabit.com

Chapter 15. Multithreading and scaling in syslog-ng
OSE

Starting with version 3.3, syslog-ng OSE can be run in multithreaded mode to scale to multiple CPUs or cores for
increased performance.

Note
By default, syslog-ng OSE runs in single-thread mode. Multithreading must be explicitly enabled.

15.1. Multithreading concepts of syslog-ng OSE

This section is a brief overview on how syslog-ng OSE works in multithreaded mode. It is mainly for illustration
purposes: the concept has been somewhat simplified and may not completely match reality.

Note
The way syslog-ng OSE uses multithreading may change in future releases. The current documentation applies to version 3.3.

syslog-ng OSE has a main thread that is always running, and a number of worker threads that process the messages.
The maximum number of worker threads syslog-ng OSE uses is the number of CPUs or cores in the host running
syslog-ng OSE (up to 64) but can be limited using the --worker-threads command-line option.

Note
The --worker-threads command-line option sets the maximum total number of threads syslog-ng OSE can use, including
the main syslog-ng OSE thread.

When an event requiring a new thread occurs (for example, syslog-ng OSE receives new messages, or a destination
becomes available), syslog-ng OSE tries to start a new thread. If there are no free threads, the task waits until a
thread finishes its task and becomes available. There are two types of worker threads:

■ Reader threads read messages from a source (as many as possible, but limited by the
log_fetch_limit() and log_iw_size() options. The thread then processes these messages, that
is, performs filtering, rewriting and other tasks as necessary, and puts the log message into the queue of
the destination. If the destination does not have a queue (for example, usertty), the reader thread sends
the message to the destination, without the interaction of a separate writer thread.

■ Writer threads take the messages from the queue of the destination and send them to the destination,
that is, write the messages into a file, or send them to the syslog server over the network. The writer
thread starts to process messages from the queue only if the destination is writable, and there are enough
messages in the queue, as set in the flush_lines() and the flush_timeout() options. Writer

264www.balabit.com

Multithreading concepts of syslog-ng OSE

threads stop processing messages when the destination becomes unavailable, or there are no more
messages in the queue.

The following list describes which sources and destinations can use multiple threads.

■ The tcp and syslog(tcp) sources can process independent connections in separate threads. The
number of independent connections is limited by the max_connections() option of the source.
Separate sources are processed by separate thread, for example, if you have two separate tcp sources
defined that receive messages on different IP addresses or port, syslog-ng OSE will use separate threads
for these sources even if they both have only a single active connection.

■ The udp, file, and pipe sources use a single thread for every source statement.

■ The tcp, syslog, and pipe destinations use a single thread for every destination.

■ The file destination uses a single thread for writing the destination file, but may use a separate thread
for each destination file if the filename includes macros.

■ The logstore destination uses separate threads for writing the messages from the journal to the logstore
files, and also for timestamping. These threads are independent from the setting of the
--worker-threads command-line option.

■ Every sql destination uses its own thread. These threads are independent from the setting of the
--worker-threads command-line option.

15.2. Configuring multithreading

Multithreading in syslog-ng OSE can be enabled using the following methods:

■ Globally using the threaded(yes) option.

■ Separately for selected sources or destinations using the flags("threaded") option.

Example 15.1. Enabling multithreading
To enable multithreading globally, use the threaded option:

options {threaded(yes) ; };

To enable multithreading only for a selected source or destination, use the flags("threaded") option:

source s_tcp_syslog { tcp(ip(127.0.0.1) port(1999) flags("syslog-protocol", "threaded")
); };

15.3. Optimizing multithreaded performance

Destinations that have a queue process that queue in a single thread. Multiple sources can send messages to the
same queue, so the queue can scale to multiple CPUs. However, when the writer thread writes the queue contents
to the destination, it will be single-threaded.

Message parsing, rewrite rules, filters, and other types of message processing is performed by the reader thread in
a sequential manner. This means that such operations can scale only if reading messages from the source can be
multithreaded. For example, if a tcp source can process messages from different connections (clients) in separate
threads. If the source cannot use multiple threads to process the messages, the operations will not scale.

To improve the processing power of syslog-ng OSE and scale to more processors, use the following methods:

265www.balabit.com

Configuring multithreading

■ To improve scaling on the source side, use more sources, for example, more source files, or receive the
messages from more parallel connections. For network sources, you can also configure a part of your
clients to send the messages to a different port of your syslog-ng server, and use separate source definitions
for each port.

■ On the destination side, when writing the log messages to files, use macros in the filename to split the
messages to separate files (for example, using the ${HOST} macro). Files with macros in their filenames
are processed in separate writer threads.

■ On the destination side, when sending messages to a syslog-ng server, you can use multiple connections
to the server if you configure the syslog-ng server to receive messages on multiple ports, and configure
the clients to use both ports.

266www.balabit.com

Optimizing multithreaded performance

Chapter 16. Troubleshooting syslog-ng

This chapter provides tips and guidelines about troubleshooting problems related to syslog-ng.

Tip
As a general rule, first try to get logging the messages to a local file. Once this is working, you know that syslog-ng is running
correctly and receiving messages, and you can proceed to forwarding the messages to the server.

If the syslog-ng server does not receive the messages, use tcpdump or a similar packet sniffer tool on the client to verify that
the messages are sent correctly, and on the server to verify that it receives the messages.

If syslog-ng is closing the connections for no apparent reason, be sure to check the log messages of syslog-ng. You might
also want to run syslog-ng with the --verbose or --debug command-line options for more-detailed log messages. Starting
from syslog-ng OSE version 3.1, you can enable these messages without restarting syslog-ng using the syslog-ng-ctl
verbose --set=on command. For details, see the syslog-ng-ctl man page at syslog-ng-ctl(1) (p. 294).

Similarly, build up encrypted connections step-by-step: first create a working unencrypted (for example TCP) connection,
then add TLS encryption, and finally client authentication if needed.

16.1. Possible causes of losing log messages

During the course of a message from the sending application to the final destination of the message, there are a
number of locations where a message may be lost, even though syslog-ng does its best to avoid message loss. Usually
losing messages can be avoided with careful planning and proper configuration of syslog-ng and the hosts running
syslog-ng. The following list shows the possible locations where messages may be lost, and provides methods to
minimize the risk of losing messages.

Note
The following list covers the main possibilities of losing messages, but does not take into account the possible use of flow-control
(for details, see Section 8.2, Managing incoming and outgoing messages with flow-control (p. 178)). This topic will be addressed in more
detail in the future releases of this guide.

■ Between the application and the syslog-ng client: Make sure to use an appropriate source to receive the logs
from the application (for example from /dev/log). For example, use unix-stream instead of
unix-dgram whenever possible.

■ When syslog-ng is sending messages: If syslog-ng cannot send messages to the destination and the output
buffer gets full, syslog-ng will drop messages. Use flags (flow-control) to avoid it (for details, see Section
8.2.2, Configuring flow-control (p. 181)). The number of dropped messages is displayed per destination in
the log message statistics of syslog-ng (for details, see Chapter 14, Statistics of syslog-ng (p. 261)).

■ On the network: When transferring messages using the UDP protocol, messages may be lost without any
notice or feedback — such is the nature of the UDP protocol. Always use the TCP protocol to transfer
messages over the network whenever possible.

■ In the socket receive buffer: When transferring messages using the UDP protocol, the UDP datagram (that
is, the message) that reaches the receiving host placed in a memory area called the socket receive
buffer. If the host receives more messages than it can process, this area overflows, and the kernel
drops messages without letting syslog-ng know about it. Using TCP instead of UDP prevents this issue.

267www.balabit.com

Possible causes of losing log messages

If you must use the UDP protocol, increase the size of the receive buffer using the so_rcvbuf()
option.

■ When syslog-ng is receiving messages: The receiving syslog-ng (for example the syslog-ng server or relay) may
drop messages if the fifo of the destination file gets full. The number of dropped messages is displayed
per destination in the log message statistics of syslog-ng (for details, see Chapter 14, Statistics of
syslog-ng (p. 261)).

■ When the destination cannot handle large load: When syslog-ng is sending messages at a high rate into an SQL
database, a file, or another destination, it is possible that the destination cannot handle the load, and
processes the messages slowly. As a result, the buffers of syslog-ng fill up, syslog-ng cannot process the
incoming messages, and starts to loose messages. For details, see the previous entry. Use the throttle
parameter to avoid this problem.

■ As a result of an unclean shutdown of the syslog-ng server: If the host running the syslog-ng server experiences
an unclean shutdown, it takes time until the clients realize that the connection to the syslog-ng server is
down. Messages that are put into the output TCP buffer of the clients during this period are not sent
to the server.

16.2. Procedure – Creating syslog-ng core files

Purpose:

When syslog-ng crashes for some reason, it can create a core file that contains important troubleshooting information.
To enable core files, complete the following procedure:

Steps:

Step 1. Core files are produced only if the maximum core file size ulimit is set to a high value in the init
script of syslog-ng. Add the following line to the init script of syslog-ng:

ulimit -c unlimited

Step 2. Verify that syslog-ng has permissions to write the directory it is started from, for example
/opt/syslog-ng/sbin/.

Step 3. If syslog-ng crashes, it will create a core file in the directory syslog-ng was started from.

Step 4. To test that syslog-ng can create a core file, you can create a crash manually. For this, determine the PID
of syslog-ng (for example using the ps -All|grep syslog-ng command), then issue the following
command: kill -ABRT <syslog-ng pid>
This should create a core file in the current working directory.

16.3. Collecting debugging information with strace, truss, or tusc

To properly troubleshoot certain situations, it can be useful to trace which system calls syslog-ng OSE performs.
How this is performed depends on the platform running syslog-ng OSE. In general, note the following points:

■ When syslog-ng OSE is started, a supervisor process might stay in the foreground, while the actual
syslog-ng daemon goes to the background. Always trace the background process.

268www.balabit.com

Collecting debugging information with strace, truss, or tusc

■ Apart from the system calls, the time between two system calls can be important as well. Make sure that
your tracing tool records the time information as well. For details on how to do that, refer to the manual
page of your specific tool (for example, strace on Linux, or truss on Solaris and BSD).

■ Run your tracing tool in verbose mode, and if possible, set it to print long output strings, so the messages
are not truncated.

■ When using strace, also record the output of lsof to see which files are accessed.

The following are examples for tracing system calls of syslog-ng on some platforms. The output is saved into the
/tmp/syslog-ng-trace.txt file, sufficed with the PID of the related syslog-ng process.The path of the
syslog-ng binary assumes that you have installed syslog-ng OSE from the official syslog-ng OSE binaries available
at the BalaBit website — native distribution-specific packages may use different paths.

■ Linux: strace -o /tmp/trace.txt -s256 -ff -ttT /opt/syslog-ng/sbin/syslog-ng
-f /opt/syslog-ng/etc/syslog-ng.conf -Fdv

■ HP-UX: tusc -f -o /tmp/syslog-ng-trace.txt -T /opt/syslog-ng/sbin/syslog-ng

■ IBM AIX and Solaris: truss -f -o /tmp/syslog-ng-trace.txt -r all -w all -u libc::
/opt/syslog-ng/sbin/syslog-ng -d -d -d

Tip
To execute these commands on an already running syslog-ng OSE process, use the -p <pid_of_syslog-ng> parameter.

16.4. Running a failure script

When syslog-ng is abnormally terminated, it can execute a user-created failure script. This can be used for example
to send an automatic e-mail notif ication. The script must be located at
/opt/syslog-ng/sbin/syslog-ng-failure.

16.5. Stopping syslog-ng

To avoid problems, always use the init scripts to stop syslog-ng (/etc/init.d/syslog-ng stop), instead of
using the kill command. This is especially true on Solaris and HP-UX systems, here use /etc/init.d/syslog
stop.

269www.balabit.com

Running a failure script

Chapter 17. Best practices and examples

This chapter discusses some special examples and recommendations.

17.1. General recommendations

This section provides general tips and recommendations on using syslog-ng. Some of the recommendations are
detailed in the subsequent sections.

■ Do not base the separation of log messages into different files on the facility parameter. As several
applications and processes can use the same facility, the facility does not identify the application that
sent the message. By default, the facility parameter is not even included in the log message itself.
In general, sorting the log messages into several different files can make finding specific log messages
difficult. If you must create separate log files, use the application name.

■ Standard log messages include the local time of the sending host, without any time zone information.
It is recommended to replace this timestamp with an ISODATE timestamp, because the ISODATE
format includes the year and timezone as well. To convert all timestamps to the ISODATE format,
include the following line in the syslog-ng configuration file:

options {ts_format(iso) ; };

■ Resolving the IP addresses of the clients to domain names can decrease the performance of syslog-ng.
For details, see Section 17.4, Using name resolution in syslog-ng (p. 271).

17.2. Handling lots of parallel connections

When syslog-ng is receiving messages from a large number of TCP or unix-stream connections, the CPU usage of
syslog-ng might increase even if the number of messages is low. By default, syslog-ng processes every message
when it is received. To reduce the CPU usage, process the incoming messages in batches. To accomplish this,
instruct syslog-ng to wait for a short time before processing a message. During this period additional messages
might arrive that can be processed together with the original message. To process log messages in batches, set the
time_sleep() option (measured in milliseconds) to a non-zero value. Include the following line in your syslog-ng
configuration:

options { time_sleep(20); };

Note
It is not recommended to increase the time_sleep() parameter above 100ms, as that might distort timestamps, slow down
syslog-ng, and cause messages to be dropped.

When modifying the time_sleep() option, also adjust the log_fetch_limit() and log_fifo_size() options
accordingly.

The max_connections() parameter limits the number of parallel connections for the source.

270www.balabit.com

General recommendations

If adjusting the time_sleep() option is not desired for some reason, an alternative solution is to use
unix-stream(), udp() and unix-dgram() sources instead of tcp() connections.

17.3. Handling large message load

This section provides tips on optimizing the performance of syslog-ng. Optimizing the performance is important
for syslog-ng hosts that handle large traffic.

■ Disable DNS resolution, or resolve hostnames locally. For details, see Section 17.4, Using name resolution
in syslog-ng (p. 271).

■ Enable flow-control for the TCP sources. For details, see Section 8.2, Managing incoming and outgoing messages
with flow-control (p. 178).

■ Do not use the usertty() destination driver. Under heavy load, the users are not be able to read the
messages from the console, and it slows down syslog-ng.

■ Do not use regular expressions in our filters. Evaluating general regular expressions puts a high load on
the CPU. Use simple filter functions and logical operators instead. For details, see Section 11.3, Regular
expressions (p. 230).

■ Warning
When receiving messages using the UDP protocol, increase the size of the UDP receive buffer on the receiver
host (that is, the syslog-ng OSE server or relay receiving the messages). Note that on certain platforms, for
example, on Red Hat Enterprise Linux 5, even low message load (~200 messages per second) can result in
message loss, unless the so_rcvbuf() option of the source is increased. In such cases, you will need to
increase the net.core.rmem_max parameter of the host (for example, to 1024000), but do not modify
net.core.rmem_default parameter.

As a general rule, increase the so_rcvbuf() so that the buffer size in kilobytes is higher than the rate of
incoming messages per second. For example, to receive 2000 messages per second, set the so_rcvbuf() at
least to 2 097 152 bytes.

■ Increase the value of the flush_lines() parameter. Increasing flush_lines() from 0 to 100 can
increase the performance of syslog-ng OSE by 100%.

17.4. Using name resolution in syslog-ng

The syslog-ng application can resolve the hostnames of the clients and include them in the log messages. However,
the performance of syslog-ng is severely degraded if the domain name server is unaccessible or slow. Therefore, it
is not recommended to resolve hostnames in syslog-ng. If you must use name resolution from syslog-ng, consider
the following:

■ Use DNS caching. Verify that the DNS cache is large enough to store all important hostnames. (By
default, the syslog-ng DNS cache stores 1007 entries.)

options { dns_cache(2000); };

■ If the IP addresses of the clients change only rarely, set the expiry of the DNS cache large.

options { dns_cache_expire(87600); };

■ If possible, resolve the hostnames locally. For details, see Procedure 17.4.1, Resolving hostnames locally (p. 272).

271www.balabit.com

Handling large message load

Note
Domain name resolution is important mainly in relay and server mode.

17.4.1. Procedure – Resolving hostnames locally

Purpose:

Resolving hostnames locally enables you to display hostnames in the log files for frequently used hosts, without
having to rely on a DNS server. The known IP address – hostname pairs are stored locally in a file. In the log
messages, syslog-ng will replace the IP addresses of known hosts with their hostnames. To configure local name
resolution, complete the following steps:

Steps:

Step 1. Add the hostnames and the respective IP addresses to the file used for local name resolution. On Linux
and UNIX systems, this is the /etc/hosts file. Consult the documentation of your operating system for
details.

Step 2. Instruct syslog-ng to resolve hostnames locally. Set the use_dns() option of syslog-ng to persist_only.

Step 3. Set the dns_cache_hosts() option to point to the file storing the hostnames.

options {
use_dns(persist_only);
dns_cache_hosts(/etc/hosts); };

17.5. Procedure – Collecting logs from chroot

Purpose:

To collect logs from a chroot using a syslog-ng client running on the host, complete the following steps:

272www.balabit.com

Using name resolution in syslog-ng

Figure 17.1. Collecting logs from chroot

Steps:

Step 1. Create a /dev directory within the chroot. The applications running in the chroot send their log messages
here.

Step 2. Create a local source in the configuration file of the syslog-ng application running outside the chroot. This
source should point to the /dev/log file within the chroot (for example to the /chroot/dev/log
directory).

Step 3. Include the source in a log statement.

Note
You need to set up timezone information within your chroot as well. This usually means creating a symlink to
/etc/localtime.

273www.balabit.com

Using name resolution in syslog-ng

Appendix 1. The syslog-ng manual pages

274www.balabit.com

Name

loggen — Generate syslog messages at a specified rate

Synopsis

loggen [options]target [port]

Description

NOTE: The loggen application is distributed with the syslog-ng system logging application, and is usually part of
the syslog-ng package. The latest version of the syslog-ng application is available at the official syslog-ng website.

This manual page is only an abstract; for the complete documentation of syslog-ng, see The syslog-ng Administrator
Guide.

The loggen application is tool to test and stress-test your syslog server and the connection to the server. It can
send syslog messages to the server at a specified rate, using a number of connection types and protocols, including
TCP, UDP, and unix domain sockets. The messages can be generated automatically (repeating the PADDstring over
and over), or read from a file or the standard input.

When loggen finishes sending the messages, it displays the following statistics:

■ average rate: Average rate the messages were sent in messages/second.

■ count: The total number of messages sent.

■ time: The time required to send the messages in seconds.

■ average message size: The average size of the sent messages in bytes.

■ bandwidth: The average bandwidth used for sending the messages in kilobytes/second.

Options

--active-connections
<number-of-connections>

Number of connections loggen will use to send messages to the
destination. This option is usable only when using TCP or TLS
connections to the destination. Default value: 1
The loggen utility waits until every connection is established
before starting to send messages. See also the
--idle-connections option.

--csv or -C Send the statistics of the sent messages to stdout as CSV. This can
be used for plotting the message rate.

--dgram or -D Use datagram socket (UDP or unix-dgram) to send the messages
to the target. Requires the --inet option as well.

--dont-parse or -d Do not parse the lines read from the input files, send them as
received.

--help or -h Display a brief help message.

275www.balabit.com

http://www.balabit.com/network-security/syslog-ng/
http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/

--idle-connections
<number-of-connections>

Number of idle connections loggen will establish to the
destination. Note that loggen will not send any messages on idle
connections, but the connection is kept open using keep-alive
messages. This option is usable only when using TCP or TLS
connections to the destination. See also the
--active-connections option. Default value: 0

--inet or -i Use the TCP (by default) or UDP (when used together with the
--dgram option) protocol to send the messages to the target.

--interval <seconds> or -I
<seconds>

The number of seconds loggen will run. Default value: 10

Note
Note that when the --interval and --number are used
together, loggen will send messages until the period set
in --interval expires or the amount of messages set in
--number is reached, whichever happens first.

--ipv6 or -6 Specify the destination using its IPv6 address. Note that the
destination must have a real IPv6 address.

--loop-reading or -l Read the file specified in --read-file option in loop: loggen
will start reading from the beginning of the file when it reaches
the end of the file.

--number
<number-of-messages> or -n
<number-of-messages>

Number of messages to generate.

Note
Note that when the --interval and --number are used
together, loggen will send messages until the period set
in --interval expires or the amount of messages set in
--number is reached, whichever happens first.

--no-framing or -F Do not use the framing of the IETF-syslog protocol style, even if
the syslog-proto option is set.

--quiet or -Q Output statistics only when the execution of loggen is finished.
If not set, the statistics are displayed every second.

--rate <message/second> or -r
<message/second>

The number of messages generated per second for every active
connection. Default value: 1000

--read-file <filename> or -R
<filename>

Read the messages from a file and send them to the target. See
also the --skip-tokens option.
Specify - as the input file to read messages from the standard input
(stdio). Note that when reading messages from the standard input,
loggen can only use a single thread. The -R - parameters must
be placed at end of command, like: loggen 127.0.0.1 1061
--read-file -

276www.balabit.com

--sdata <data-to-send> or -p
<data-to-send>

Send the argument of the --sdata option as the SDATA part of
IETF-syslog (RFC5424 formatted) messages. Use it together with
the --syslog-proto option. For example: --sdata "[test
name=\"value\"]

--size <message-size> or -s
<message-size>

The size of a syslog message in bytes. Default value: 256. Minimum
value: 127 bytes, maximum value: 8192 bytes.

--skip-tokens <number> Skip the specified number of space-separated tokens (words) at
the beginning of every line. For example, if the messages in the
file look like foo bar message, --skip-tokens 2 skips the
foo bar part of the line, and sends only the message part. Works
only when used together with the --read-file parameter.
Default value: 3

--stream or -S Use a stream socket (TCP or unix-stream) to send the messages
to the target.

--syslog-proto or -P Use the new IETF-syslog message format as specified in RFC5424.
By default, loggen uses the legacy BSD-syslog message format (as
described in RFC3164). See also the --no-framing option.

--unix </path/to/socket> or
-x </path/to/socket>

Use a UNIX domain socket to send the messages to the target.

--use-ssl or -U Use an SSL-encrypted channel to send the messages to the target.
Note that it is not possible to check the certificate of the target,
or to perform mutual authentication.

--version or -V Display version number of syslog-ng.

Examples

The following command generates 100 messages per second for ten minutes, and sends them to port 2010 of the
localhost via TCP. Each message is 300 bytes long.

loggen --size 300 --rate 100 --interval 600 127.0.0.1 2010

The following command is similar to the one above, but uses the UDP protocol.

loggen --inet --dgram --size 300 --rate 100 --interval 600 127.0.0.1 2010

Send a single message on TCP6 to the ::1 IPv6 address, port 1061:

loggen --ipv6 --number 1 ::1 1061

Send a single message on UDP6 to the ::1 IPv6 address, port 1061:

loggen --ipv6 --dgram --number 1 ::1 1061

Send a single message using a unix domain-socket:

loggen --unix --stream --number 1 </path/to/socket>

Read messages from the standard input (stdio) and send them to the localhost:

277www.balabit.com

loggen 127.0.0.1 1061 --read-file -

Files

/opt/syslog-ng/bin/loggen

See also

syslog-ng.conf(5)

Note
For the detailed documentation of syslog-ng OSE see The syslog-ng OSE 3.4 Administrator Guide

If you experience any problems or need help with syslog-ng, visit visit the syslog-ng wiki or the syslog-ng mailing list.

For news and notifications about of syslog-ng, visit the syslog-ng Insider Blog.

Author

This manual page was written by the BalaBit Documentation Team <documentation@balabit.com>.

Copyright

The authors grant permission to copy, distribute and/or modify this manual page under the terms of the GNU
General Public License Version 2 or newer (GPL v2+).

278www.balabit.com

http://www.balabit.com/support/documentation/
http://www.balabit.com/wiki/syslog-ng-faq
https://lists.balabit.hu/mailman/listinfo/syslog-ng
http://insider.blogs.balabit.com

Name

pdbtool — An application to test and convert syslog-ng pattern database rules

Synopsis

pdbtool [command] [options]

Description

This manual page is only an abstract; for the complete documentation of syslog-ng and pdbtool, see The
syslog-ng Administrator Guide .

The syslog-ng application can match the contents of the log messages to a database of predefined message patterns
(also called patterndb). By comparing the messages to the known patterns, syslog-ng is able to identify the exact
type of the messages, tag the messages, and sort them into message classes. The message classes can be used to
classify the type of the event described in the log message. The functionality of the pattern database is similar to
that of the logcheck project, but the syslog-ng approach is faster, scales better, and is much easier to maintain
compared to the regular expressions of logcheck.

The pdbtool application is a utility that can be used to:

■ test messages, or specific rules;

■ convert an older pattern database to the latest database format;

■ merge pattern databases into a single file;

■ automatically create pattern databases from a large amount of log messages;

■ dump the RADIX tree built from the pattern database (or a part of it) to explore how the pattern matching
works.

The dictionary command

dictionary [options]

Lists every name-value pair that can be set by the rules of the pattern database.

--dump-tags or -T List the tags instead of the names of the name-value pairs.

--pdb <path-to-file> or -p
<path-to-file>

Name of the pattern database file to use.

--program <programname> or -P
<programname>

List only the name-value pairs that can be set for the messages of
the specified $PROGRAM application.

The dump command

dump [options]

279www.balabit.com

http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/

Display the RADIX tree built from the patterns. This shows how are the patterns represented in syslog-ng and it
might also help to track down pattern-matching problems. The dump utility can dump the tree used for matching
the PROGRAM or the MSG parts.

--debug or -d Enable debug/diagnostic messages on stderr.

--pdb or -p Name of the pattern database file to use.

--program or -P Displays the RADIX tree built from the patterns belonging to the
${PROGRAM} application.

--program-tree or -T Display the ${PROGRAM} tree.

--verbose or -v Enable verbose messages on stderr.

Example and sample output:

pdbtool dump -p patterndb.xml -P 'sshd'

'p'
'assword for'
@QSTRING:@
'from'
@QSTRING:@
'port '
@NUMBER:@ rule_id='fc49054e-75fd-11dd-9bba-001e6806451b'
' ssh' rule_id='fc55cf86-75fd-11dd-9bba-001e6806451b'

'2' rule_id='fc4b7982-75fd-11dd-9bba-001e6806451b'
'ublickey for'
@QSTRING:@
'from'
@QSTRING:@
'port '
@NUMBER:@ rule_id='fc4d377c-75fd-11dd-9bba-001e6806451b'
' ssh' rule_id='fc5441ac-75fd-11dd-9bba-001e6806451b'

'2' rule_id='fc44a9fe-75fd-11dd-9bba-001e6806451b'

The match command

match [options]

Use the match command to test the rules in a pattern database. The command tries to match the specified message
against the patterns of the database, evaluates the parsers of the pattern, and also displays which part of the message
was parsed successfully. The command returns with a 0 (success) or 1 (no match) return code and displays the
following information:

■ the class assigned to the message (that is, system, violation, and so on),

■ the ID of the rule that matched the message, and

■ the values of the parsers (if there were parsers in the matching pattern).

The match command has the following options:

280www.balabit.com

--color-out or -c Color the terminal output to highlight the part of the message that
was successfully parsed.

--debug or -d Enable debug/diagnostic messages on stderr.

--debug-csv or -C Print the debugging information returned by the
--debug-pattern option as comma-separated values.

--debug-pattern or -D Print debugging information about the pattern matching. See also
the --debug-csv option.

--file=<filename-with-path>
or -f

Process the messages of the specified log file with the pattern
database. This option allows to classify messages offline, and to
apply the pattern database to already existing logfiles. To read the
messages from the standard input (stdin), specify a hyphen (-)
character instead of a filename.

--filter=<filter-expression>
or -F

Print only messages matching the specified syslog-ng filter
expression.

--message or -M The text of the log message to match (only the ${MESSAGE} part
without the syslog headers).

--pdb or -p Name of the pattern database file to use.

--program or -P Name of the program to use, as contained in the ${PROGRAM}
part of the syslog message.

--template=<template-expression>
or -T

A syslog-ng template expression that is used to format the output
messages.

--verbose or -v Enable verbose messages on stderr.

Example: The following command checks if the patterndb.xml file recognizes the Accepted publickey
for myuser from 127.0.0.1 port 59357 ssh2 message:

pdbtool match -p patterndb.xml -P sshd -M "Accepted publickey for myuser from
127.0.0.1 port 59357 ssh2"

The following example applies the sshd.pdb pattern database file to the log messages stored in the
/var/log/messages file, and displays only the messages that received a useracct tag.

pdbtool match -p sshd.pdb \
–file /var/log/messages \
–filter ‘tags(“usracct”);’

The merge command

merge [options]

Use the merge command to combine separate pattern database files into a single file (pattern databases are usually
stored in separate files per applications to simplify maintenance). If a file uses an older database format, it is
automatically updated to the latest format (V3). See the The syslog-ng Administrator Guide for details
on the different pattern database versions.

--debug or -d Enable debug/diagnostic messages on stderr.

281www.balabit.com

http://www.balabit.com/support/documentation/

--directory or -D The directory that contains the pattern database XML files to be merged.

--glob or -G Specify filenames to be merged using a glob pattern, for example, using
wildcards. For details on glob patterns, see man glob. This pattern is applied
only to the filenames, and not on directory names.

--pdb or -p Name of the output pattern database file.

--recursive or -r Merge files from subdirectories as well.

--verbose or -v Enable verbose messages on stderr.

Example:

pdbtool merge --recursive --directory /home/me/mypatterns/ --pdb
/var/lib/syslog-ng/patterndb.xml

Currently it is not possible to convert a file without merging, so if you only want to convert an older pattern database
file to the latest format, you have to copy it into an empty directory.

The patternize command

patternize [options]

Automatically create a pattern database from a log file containing a large number of log messages. The resulting
pattern database is printed to the standard output (stdout). The pdbtool patternize command uses a data
clustering technique to find similar log messages and replacing the differing parts with @ESTRING:: @ parsers.
For details on pattern databases and message parsers, see the The syslog-ng Administrator Guide . The
patternize command is available only in syslog-ng OSE version 3.2 and later.

--debug or -d Enable debug/diagnostic messages on stderr.

--file=<path> or -f The logfile containing the log messages to create patterns from.
To receive the log messages from the standard input (stdin), use
-.

--iterate-outliers or -o Recursively iterate on the log lines to cover as many log messages
with patterns as possible.

--named-parsers or -n The number of example log messages to include in the pattern
database for every pattern. Default value: 1

--no-parse or -p Do not parse the input file, treat every line as the message part of
a log message.

--samples=<number-of-samples> Include a generated name in the parsers, for example,
.dict.string1, .dict.string2, and so on.

--support=<number> or -S A pattern is added to the output pattern database if at least the
specified percentage of log messages from the input logfile match
the pattern. For example, if the input logfile contains 1000 log
messages and the --support=3.0 option is used, a pattern is
created only if the pattern matches at least 3 percent of the log
messages (that is, 30 log messages). If patternize does not create
enough patterns, try to decrease the support value.
Default value: 4.0

282www.balabit.com

http://www.balabit.com/support/documentation/

--verbose or -v Enable verbose messages on stderr.

Example:

pdbtool patternize --support=2.5 --file=/var/log/messages

The test command

test [options]

Use the test command to validate a pattern database XML file. Note that you must have the xmllint application
installed. The test command is available only in syslog-ng OSE version 3.2 and later.

--color-out or -c Enable coloring in terminal output.

--debug or -d Enable debug/diagnostic messages on stderr.

--debug or -D Print debugging information on non-matching patterns.

--rule-id or -r Test only the patterndb rule (specified by its rule id) against its example.

--validate Validate a pattern database XML file.

--verbose or -v Enable verbose messages on stderr.

Example:

pdbtool test --validate /home/me/mypatterndb.pdb

Files

/opt/syslog-ng/

/opt/syslog-ng/etc/syslog-ng.conf

See also

The syslog-ng Administrator Guide

syslog-ng.conf(5)

syslog-ng(8)

Note
For the detailed documentation of syslog-ng OSE see The syslog-ng OSE 3.4 Administrator Guide

If you experience any problems or need help with syslog-ng, visit visit the syslog-ng wiki or the syslog-ng mailing list.

For news and notifications about of syslog-ng, visit the syslog-ng Insider Blog.

Author

This manual page was written by the BalaBit Documentation Team <documentation@balabit.com>.

283www.balabit.com

http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/
http://www.balabit.com/wiki/syslog-ng-faq
https://lists.balabit.hu/mailman/listinfo/syslog-ng
http://insider.blogs.balabit.com

Copyright

The authors grant permission to copy, distribute and/or modify this manual page under the terms of the GNU
General Public License Version 2 or newer (GPL v2+).

284www.balabit.com

Name

syslog-ng — syslog-ng system logger application

Synopsis

syslog-ng [options]

Description

This manual page is only an abstract; for the complete documentation of syslog-ng, see The syslog-ng Open
Source Edition Administrator Guide or the official syslog-ng website.

The syslog-ng OSE application is a flexible and highly scalable system logging application. Typically, syslog-ng is
used to manage log messages and implement centralized logging, where the aim is to collect the log messages of
several devices on a single, central log server. The different devices - called syslog-ng clients - all run syslog-ng, and
collect the log messages from the various applications, files, and other sources. The clients send all important log
messages to the remote syslog-ng server, where the server sorts and stores them.

Options

--caps Run syslog-ng OSE process with the specified POSIX capability
flags.

■ If the --no-caps option is not set,syslog-ng OSE has been
compiled with the --enable-linux-caps compile option,
and the host supports CAP_SYSLOG, syslog-ng OSE uses the
f o l l o w i n g c a p a b i l i t i e s :
"cap_net_bind_service,cap_net_broadcast,cap_net_raw,cap_dac_read_search,cap_dac_override,cap_chown,cap_fowner=p
cap_syslog=ep"

■ If the --no-caps option is not set, and the host does not
support CAP_SYSLOG, syslog-ng OSE uses the following
c a p a b i l i t i e s :
"cap_net_bind_service,cap_net_broadcast,cap_net_raw,cap_dac_read_search,cap_dac_override,cap_chown,cap_fowner=p
cap_sys_admin=ep"

--cfgfile <file> or -f <file> Use the specified configuration file.

--chroot <dir> or -C <dir> Change root to the specified directory. The configuration file is
read after chrooting so, the configuration file must be available
within the chroot. That way it is also possible to reload the
syslog-ng configuration after chrooting. However, note that the
--user and --group options are resolved before chrooting.

--debug or -d Start syslog-ng in debug mode.

--default-modules A comma-separated list of the modules that are loaded
automatically. Modules not loaded automatically can be loaded by
including the @module <modulename> statement in the syslog-ng
OSE configuration file. The following modules are loaded by
d e f a u l t :

285www.balabit.com

http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/
http://www.balabit.com/network-security/syslog-ng/

affile,afprog,afsocket,afuser,basicfuncs,csvparser,dbparser,syslogformat,afsql.
Available only in syslog-ng Open Source Edition 3.3 and later.

--enable-core Enable syslog-ng to write core files in case of a crash to help
support and debugging.

--fd-limit <number> Set the minimal number of required file descriptors (fd-s); this sets
how many files syslog-ng can keep open simultaneously. Default
value: 4096. Note that this does not override the global ulimit
setting of the host.

--foreground or -F Do not daemonize, run in the foreground.

--group <group> or -g <group> Switch to the specified group after initializing the configuration
file.

--help or -h Display a brief help message.

--module-registry Display the list and description of the available modules. Note that
not all of these modules are loaded automatically, only the ones
specified in the --default-modules option. Available only in
syslog-ng Open Source Edition 3.3 and later.

--no-caps Run syslog-ng as root, without capability-support. This is the
default behavior. On Linux, it is possible to run syslog-ng as
non-root with capability-support if syslog-ng was compiled with
the --enable-linux-caps option enabled. (Execute
syslog-ng --version to display the list of enabled build
parameters.)
To run syslog-ng OSE with specific capabilities, use the --caps
option.

--persist-file
<persist-file> or -R
<persist-file>

Set the path and name of the syslog-ng.persist file where
the persistent options and data are stored.

--pidfile <pidfile> or -p
<pidfile>

Set path to the PID file where the pid of the main process is stored.

--preprocess-into
<output-file>

After processing the configuration file and resolving included files
and variables, write the resulting configuration into the specified
output file. Available only in syslog-ng Open Source Edition 3.3
and later.

--process-mode <mode> Sets how to run syslog-ng: in the foreground (mainly used for
debugging), in the background as a daemon, or in
safe-background mode. By default, syslog-ng runs in
safe-backgroundmode. This mode creates a supervisor process
called supervising syslog-ng , that restarts syslog-ng if it
crashes.

--stderr or -e Log internal messages of syslog-ng to stderr. Mainly used for
debugging purposes in conjunction with the --foreground
option. If not specified, syslog-ng will log such messages to its
internal source.

286www.balabit.com

--syntax-only or -s Verify that the configuration file is syntactically correct and exit.

--user <user> or -u <user> Switch to the specified user after initializing the configuration file
(and optionally chrooting). Note that it is not possible to reload
the syslog-ng configuration if the specified user has no privilege
to create the /dev/log file.

--verbose or -v Enable verbose logging used to troubleshoot syslog-ng.

--version or -V Display version number and compilation information, and also
the list and short description of the available modules. For detailed
description of the available modules, see the
--module-registry option. Note that not all of these modules
are loaded automatically, only the ones specified in the
--default-modules option.

--worker-threads Sets the number of worker threads syslog-ng OSE can use,
including the main syslog-ng OSE thread. Note that certain
operations in syslog-ng OSE can use threads that are not limited
by this option. This setting has effect only when syslog-ng OSE
is running in multithreaded mode. Available only in syslog-ng Open
Source Edition 3.3 and later. See The syslog-ng Open Source
Edition 3.4 Administrator Guide for details.

Files

/opt/syslog-ng/

/opt/syslog-ng/etc/syslog-ng.conf

See also

syslog-ng.conf(5)

Note
For the detailed documentation of syslog-ng OSE see The syslog-ng OSE 3.4 Administrator Guide

If you experience any problems or need help with syslog-ng, visit visit the syslog-ng wiki or the syslog-ng mailing list.

For news and notifications about of syslog-ng, visit the syslog-ng Insider Blog.

Author

This manual page was written by the BalaBit Documentation Team <documentation@balabit.com>.

Copyright

The authors grant permission to copy, distribute and/or modify this manual page under the terms of the GNU
General Public License Version 2 or newer (GPL v2+).

287www.balabit.com

http://www.balabit.com/support/documentation/
http://www.balabit.com/wiki/syslog-ng-faq
https://lists.balabit.hu/mailman/listinfo/syslog-ng
http://insider.blogs.balabit.com

Name

syslog-ng.conf — syslog-ng configuration file

Synopsis

syslog-ng.conf

Description

This manual page is only an abstract; for the complete documentation of syslog-ng, see The syslog-ng Open
Source Edition Administrator Guide or the official syslog-ng website.

The syslog-ng OSE application is a flexible and highly scalable system logging application. Typically, syslog-ng is
used to manage log messages and implement centralized logging, where the aim is to collect the log messages of
several devices on a single, central log server. The different devices - called syslog-ng clients - all run syslog-ng, and
collect the log messages from the various applications, files, and other sources. The clients send all important log
messages to the remote syslog-ng server, where the server sorts and stores them.

Basic concepts of syslog-ng OSE

The syslog-ng application reads incoming messages and forwards them to the selected destinations. The syslog-ng
application can receive messages from files, remote hosts, and other sources.

Log messages enter syslog-ng in one of the defined sources, and are sent to one or more destinations.

Sources and destinations are independent objects; log paths define what syslog-ng does with a message, connecting
the sources to the destinations. A log path consists of one or more sources and one or more destinations; messages
arriving from a source are sent to every destination listed in the log path. A log path defined in syslog-ng is called
a log statement.

Optionally, log paths can include filters. Filters are rules that select only certain messages, for example, selecting only
messages sent by a specific application. If a log path includes filters, syslog-ng sends only the messages satisfying
the filter rules to the destinations set in the log path.

Other optional elements that can appear in log statements are parsers and rewriting rules. Parsers segment messages
into different fields to help processing the messages, while rewrite rules modify the messages by adding, replacing,
or removing parts of the messages.

Configuring syslog-ng

■ The main body of the configuration file consists of object definitions: sources, destinations, logpaths
define which log message are received and where they are sent. All identifiers, option names and attributes,
and any other strings used in the syslog-ng configuration file are case sensitive. Objects must be defined
before they are referenced in another statement. Object definitions (also called statements) have the
following syntax:

object_type object_id {<options>};

288www.balabit.com

http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/
http://www.balabit.com/network-security/syslog-ng/

• Type of the object: One of source, destination, log, filter, parser, rewrite rule, or template.

• Identifier of the object: A unique name identifying the object. When using a reserved word as an identifier,
enclose the identifier in quotation marks.

Tip
Use identifiers that refer to the type of the object they identify. For example, prefix source objects with
s_, destinations with d_, and so on.

Note
Repeating a definition of an object (that is, defining the same object with the same id more than once) is
not allowed, unless you use the @define allow-config-dups 1 definition in the configuration file.

• Parameters: The parameters of the object, enclosed in braces {parameters}.

• Semicolon: Object definitions end with a semicolon (;).
For example, the following line defines a source and calls it s_internal.

source s_internal { internal(); };

The object can be later referenced in other statements using its ID, for example, the previous source is
used as a parameter of the following log statement:

log { source(s_internal); destination(d_file); };

■ The parameters and options within a statement are similar to function calls of the C programming
language: the name of the option followed by a list of its parameters enclosed within brackets and
terminated with a semicolon.

option(parameter1, parameter2); option2(parameter1, parameter2);

For example, the following source statement has three options; the first two options (file() and
follow_freq()) have a single parameter, while the third one (flags()) has two parameters:

source s_tail { file("/var/log/apache/access.log"
follow_freq(1) flags(no-parse, validate-utf8)); };

Objects may have required and optional parameters. Required parameters are positional, meaning that
they must be specified in a defined order. Optional parameters can be specified in any order using the
option(value) format. If a parameter (optional or required) is not specified, its default value is used.
The parameters and their default values are listed in the reference section of the particular object.

Example 1.1. Using required and optional parameters
The unix-stream() source driver has a single required argument: the name of the socket to listen on.
Optional parameters follow the socket name in any order, so the following source definitions have the same
effect:

source s_demo_stream1 {
unix-stream("/dev/log" max-connections(10) group(log)); };

289www.balabit.com

source s_demo_stream2 {
unix-stream("/dev/log" group(log) max-connections(10)); };

■ Some options are global options, or can be set globally, for example, whether syslog-ng OSE should
use DNS resolution to resolve IP addresses. Global options are detailed in Chapter 9, Global options of
syslog-ng OSE (p. 191).

options { use_dns(no); };

■ All identifiers, attributes, and any other strings used in the syslog-ng configuration file are case sensitive.

■ Objects can be used before definition.

■ Objects can be defined inline as well. This is useful if you use the object only once (for example, a filter).
For details, see Section 5.4, Defining configuration objects inline (p. 47).

■ To add comments to the configuration file, start a line with # and write your comments. These lines are
ignored by syslog-ng.

Comment: This is a stream source
source s_demo_stream {

unix-stream("/dev/log" max-connections(10) group(log)); };

The syntax of log statements is as follows:

log {
source(s1); source(s2); ...
optional_element(filter1|parser1|rewrite1);...
optional_element(filter2|parser2|rewrite2);...
destination(d1); destination(d2); ...
flags(flag1[, flag2...]);
};

The following log statement sends all messages arriving to the localhost to a remote server.

source s_localhost { tcp(ip(127.0.0.1) port(1999)); };
destination d_tcp { tcp("10.1.2.3" port(1999); localport(999)); };
log { source(s_localhost); destination(d_tcp); };

The syslog-ng application has a number of global options governing DNS usage, the timestamp format used, and
other general points. Each option may have parameters, similarly to driver specifications. To set global options,
add an option statement to the syslog-ng configuration file using the following syntax:

options { option1(params); option2(params); ... };

Example 1.2. Using global options
To disable domain name resolving, add the following line to the syslog-ng configuration file:

options { use_dns(no); };

290www.balabit.com

The sources, destinations, and filters available in syslog-ng are listed below. For details, see The syslog-ng
Administrator Guide .

DescriptionName

Messages generated internally in syslog-ng.internal()

Opens the specified file and reads messages.file()

Reads messages from the process accounting logs on
Linux.

pacct()

Opens the specified named pipe and reads messages.pipe()

Opens the specified application and reads messages from
its standard output.

program()

Opens the specified STREAMS device on Solaris systems
and reads incoming messages.

sun-stream(), sun-streams()

Listens for incoming messages using the new
IETF-standard syslog protocol.

syslog()

Automatically detects which platform syslog-ng OSE is
running on, and collects the native log messages of that
platform.

system()

Listens on the specified TCP port for incoming messages
using the BSD-syslog protocol over IPv4 and IPv6 networks,
respectively.

tcp(), tcp6()

Listens on the specified UDP port for incoming messages
using the BSD-syslog protocol over IPv4 and IPv6 networks,
respectively.

udp(), udp6()

Opens the specified unix socket in SOCK_DGRAM mode
and listens for incoming messages.

unix-dgram()

Opens the specified unix socket in SOCK_STREAMmode
and listens for incoming messages.

unix-stream()

Table 1.1. Source drivers available in syslog-ng

DescriptionName

Publishes messages using the AMQP (Advanced Message
Queuing Protocol).

amqp()

Writes messages to the specified file.file()

Writes messages to the specified named pipe.pipe()

Forks and launches the specified program, and sends
messages to its standard input.

program()

Sends e-mail messages to the specified recipients.smtp()

Sends messages into an SQL database. In addition to the
standard syslog-ng packages, the sql() destination

sql()

requires database-specific packages to be installed. Refer

291www.balabit.com

http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/

DescriptionName

to the section appropriate for your platform in Chapter 3,
Installing syslog-ng (p. 28).

Sends messages to the specified remote host using the
IETF-syslog protocol. The IETF standard supports message

syslog()

transport using the UDP, TCP, and TLS networking
protocols.

Sends messages to the specified TCP port of a remote
host using the BSD-syslog protocol over IPv4 and IPv6,
respectively.

tcp() and tcp6()

Sends messages to the specified UDP port of a remote
host using the BSD-syslog protocol over IPv4 and IPv6,
respectively.

udp() and udp6()

Sends messages to the specified unix socket in
SOCK_DGRAM style (BSD).

unix-dgram()

Sends messages to the specified unix socket in
SOCK_STREAM style (Linux).

unix-stream()

Sends messages to the terminal of the specified user, if
the user is logged in.

usertty()

Table 1.2. Destination drivers available in syslog-ng

DescriptionName

Filter messages based on the sending facility.facility()

Call another filter function.filter()

Filter messages based on the sending host.host()

Filter messages based on their priority.level() or priority()

Use a regular expression to filter messages based on a
specified header or content field.

match()

Use a regular expression to filter messages based their
content.

message()

Filter messages based on the IP address of the sending
host.

netmask()

Filter messages based on the sending application.program()

Select messages of the specified syslog-ng OSE source
statement.

source()

Select messages having the specified tag.tags()

Table 1.3. Filter functions available in syslog-ng OSE

Files

/opt/syslog-ng/

292www.balabit.com

/opt/syslog-ng/etc/syslog-ng.conf

See also

syslog-ng(8)

Note
For the detailed documentation of syslog-ng OSE see The syslog-ng OSE 3.4 Administrator Guide

If you experience any problems or need help with syslog-ng, visit visit the syslog-ng wiki or the syslog-ng mailing list.

For news and notifications about of syslog-ng, visit the syslog-ng Insider Blog.

Author

This manual page was written by the BalaBit Documentation Team <documentation@balabit.com>.

Copyright

The authors grant permission to copy, distribute and/or modify this manual page under the terms of the GNU
General Public License Version 2 or newer (GPL v2+).

293www.balabit.com

http://www.balabit.com/support/documentation/
http://www.balabit.com/wiki/syslog-ng-faq
https://lists.balabit.hu/mailman/listinfo/syslog-ng
http://insider.blogs.balabit.com

Name

syslog-ng-ctl — Display message statistics and enable verbose, debug and trace modes in syslog-ng Open Source
Edition

Synopsis

syslog-ng-ctl [command] [options]

Description

NOTE: The syslog-ng-ctl application is distributed with the syslog-ng Open Source Edition system logging
application, and is usually part of the syslog-ng package. The latest version of the syslog-ng application is available
at the official syslog-ng website.

This manual page is only an abstract; for the complete documentation of syslog-ng, see The syslog-ng Open
Source Edition Administrator Guide .

The syslog-ng-ctl application is a utility that can be used to:

■ enable/disable various syslog-ng messages for troubleshooting;

■ display statistics about the processed messages;

■ reload the configuration of syslog-ng OSE.

Enabling troubleshooting messages

command [options]

Use the syslog-ng-ctl <command> --set=on command to display verbose, trace, or debug messages. If
you are trying to solve configuration problems, the debug (and occassionally trace) messages are usually sufficient;
debug messages are needed mostly for finding software errors. After solving the problem, do not forget to turn
these messages off using the syslog-ng-ctl <command> --set=off. Note that enabling debug messages
does not enable verbose and trace messages.

Use syslog-ng-ctl <command> without any parameters to display whether the particular type of messages are
enabled or not.

If you need to use a non-standard control socket to access syslog-ng, use the syslog-ng-ctl <command>
--set=on --control=<socket> command to specify the socket to use.

verbose Print verbose messages. If syslog-ng was started with the --stderr or -e option, the
messages will be sent to stderr. If not specified, syslog-ng will log such messages to its internal
source.

trace Print trace messages of how messages are processed. If syslog-ng was started with the
--stderr or -e option, the messages will be sent to stderr. If not specified, syslog-ng will
log such messages to its internal source.

debug Print debug messages. If syslog-ng was started with the --stderr or -e option, the messages
will be sent to stderr. If not specified, syslog-ng will log such messages to its internal source.

294www.balabit.com

http://www.balabit.com/network-security/syslog-ng/
http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/

Example:

syslog-ng-ctl verbose --set=on

The stats command

stats [options]

Use the stats command to display statistics about the processed messages. The stats command has the following
options:

--control=<socket> or -c Specify the socket to use to access syslog-ng. Only needed when
using a non-standard socket.

Example:

syslog-ng-ctl stats

An example output:

src.internal;s_all#0;;a;processed;6445
src.internal;s_all#0;;a;stamp;1268989330
destination;df_auth;;a;processed;404
destination;df_news_dot_notice;;a;processed;0
destination;df_news_dot_err;;a;processed;0
destination;d_ssb;;a;processed;7128
destination;df_uucp;;a;processed;0
source;s_all;;a;processed;7128
destination;df_mail;;a;processed;0
destination;df_user;;a;processed;1
destination;df_daemon;;a;processed;1
destination;df_debug;;a;processed;15
destination;df_messages;;a;processed;54
destination;dp_xconsole;;a;processed;671
dst.tcp;d_network#0;10.50.0.111:514;a;dropped;5080
dst.tcp;d_network#0;10.50.0.111:514;a;processed;7128
dst.tcp;d_network#0;10.50.0.111:514;a;stored;2048
destination;df_syslog;;a;processed;6724
destination;df_facility_dot_warn;;a;processed;0
destination;df_news_dot_crit;;a;processed;0
destination;df_lpr;;a;processed;0
destination;du_all;;a;processed;0
destination;df_facility_dot_info;;a;processed;0
center;;received;a;processed;0
destination;df_kern;;a;processed;70
center;;queued;a;processed;0
destination;df_facility_dot_err;;a;processed;0

Reloading the configuration

command [options]

295www.balabit.com

Use the syslog-ng-ctl reload command to reload the configuration file of syslog-ng OSE without having
to restart the syslog-ng OSE application. The syslog-ng-ctl reload works like a SIGHUP.

Files

/opt/syslog-ng/sbin/syslog-ng-ctl

See also

The syslog-ng Administrator Guide

syslog-ng.conf(5)

syslog-ng(8)

Note
For the detailed documentation of syslog-ng OSE see The syslog-ng OSE 3.4 Administrator Guide

If you experience any problems or need help with syslog-ng, visit visit the syslog-ng wiki or the syslog-ng mailing list.

For news and notifications about of syslog-ng, visit the syslog-ng Insider Blog.

Author

This manual page was written by the BalaBit Documentation Team <documentation@balabit.com>.

Copyright

The authors grant permission to copy, distribute and/or modify this manual page under the terms of the GNU
General Public License Version 2 or newer (GPL v2+).

296www.balabit.com

http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/
http://www.balabit.com/wiki/syslog-ng-faq
https://lists.balabit.hu/mailman/listinfo/syslog-ng
http://insider.blogs.balabit.com

Appendix 2. GNU General Public License

Version 2, June 1991
Copyright © 1989, 1991 Free Software Foundation, Inc.

Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301
USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

Version 2, June 1991

2.1. Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change free software - to make
sure the software is free for all its users. This General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed
to make sure that you have the freedom to distribute copies of free software (and charge for this service if you
wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to
surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

We protect your rights with two steps:

1. copyright the software, and

2. offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its recipients
to know that what they have is not the original, so that any problems introduced by others will not reflect on the
original authors' reputations.

297www.balabit.com

Preamble

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors
of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this,
we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

2.2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

2.2.1. Section 0

This License applies to any program or other work which contains a notice placed by the copyright holder saying
it may be distributed under the terms of this General Public License. The “Program”, below, refers to any such
program or work, and a “work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications
and/or translated into another language. (Hereinafter, translation is included without limitation in the term
“modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its
scope. The act of running the Program is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

2.2.2. Section 1

You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and
give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection
in exchange for a fee.

2.2.3. Section 2

You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files and the
date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under
the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these conditions, and telling the
user how to view a copy of this License. (Exception: If the Program itself is interactive but does not

298www.balabit.com

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

normally print such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived
from the Program, and can be reasonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole
must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus
to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather,
the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based
on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope
of this License.

2.2.4. Section 3

You may copy and distribute the Program (or a work based on it, under Section 2 in object code or executable form
under the terms of Sections 1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine-readable copy
of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding source code.
(This alternative is allowed only for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable
work, complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place counts as distribution of the source code, even
though third parties are not compelled to copy the source along with the object code.

2.2.5. Section 4

You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full compliance.

299www.balabit.com

Section 3

2.2.6. Section 5

You are not required to accept this License, since you have not signed it. However, nothing else grants you permission
to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept
this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

2.2.7. Section 6

Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives
a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.

2.2.8. Section 7

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited
to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute
so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a
consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the
section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution
system, which is implemented by public license practices. Many people have made generous contributions to the
wide range of software distributed through that system in reliance on consistent application of that system; it is up
to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee
cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

2.2.9. Section 8

If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only in or among countries not
thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

300www.balabit.com

Section 5

2.2.10. Section 9

The Free Software Foundation may publish revised and/or new versions of the General Public License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License
which applies to it and “any later version”, you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free Software Foundation.

2.2.11. Section 10

If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different,
write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the
two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse
of software generally.

2.2.12. NO WARRANTY Section 11

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

2.2.13. Section 12

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

2.3. How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to
achieve this is to make it free software which everyone can redistribute and change under these terms.

301www.balabit.com

Section 9

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to
most effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a
pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO
WARRANTY; for details type “show w”. This is free software, and you are welcome to redistribute it under certain
conditions; type “show c” for details.

The hypothetical commands “show w” and “show c” should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than “show w” and “show c”; they could
even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program “Gnomovision” (which makes passes at
compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program
is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library.
If this is what you want to do, use the GNU Library General Public License instead of this License.

302www.balabit.com

How to Apply These Terms to Your New Programs

Appendix 3. GNU Lesser General Public License

This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public
License, version 2, hence the version number 2.1.
Copyright © 1991, 1999 Free Software Foundation, Inc.

Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301
USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

Version 2.1, February 1999

3.1. Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make
sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software packages--typically
libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we
suggest you first think carefully about whether this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this service
if you wish); that you receive source code or can get it if you want it; that you can change the software and use
pieces of it in new free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you
to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the
rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other
code with the library, you must provide complete object files to the recipients, so that they can relink them with
the library after making changes to the library and recompiling it. And you must show them these terms so they
know their rights.

We protect your rights with a two-step method:

1. we copyright the library, and

2. we offer you this license, which gives you legal permission to copy, distribute and/or modify the library.

303www.balabit.com

Preamble

To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the
library is modified by someone else and passed on, the recipients should know that what they have is not the original
version, so that the original author's reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a
company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent
holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the
full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license,
the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the
ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries
into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combination of the two is
legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore
permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License
permits more lax criteria for linking other code with the library.

We call this license the Lesser General Public License because it does Less to protect the user's freedom than the
ordinary General Public License. It also provides other free software developers Less of an advantage over competing
non-free programs. These disadvantages are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library,
so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A
more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is
little to gain by limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of people to
use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables
many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user
of a program that is linked with the Library has the freedom and the wherewithal to run that program using a
modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the
difference between a “work based on the library” and a “work that uses the library”. The former contains code
derived from the library, whereas the latter must be combined with the library in order to run.

3.2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

3.2.1. Section 0

This License Agreement applies to any software library or other program which contains a notice placed by the
copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General
Public License (also called “this License”). Each licensee is addressed as “you”.

304www.balabit.com

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked with
application programs (which use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these terms. A
“work based on the Library” means either the Library or any derivative work under copyright law: that is to say, a
work containing the Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without limitation in the term
“modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a library,
complete source code means all the source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its
scope. The act of running a program using the Library is not restricted, and output from such a program is covered
only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing
it). Whether that is true depends on what the Library does and what the program that uses the Library does.

3.2.2. Section 1

You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and
distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection
in exchange for a fee.

3.2.3. Section 2

You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library,
and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

a. The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating that you changed the files and the
date of any change.

c. You must cause the whole of the work to be licensed at no charge to all third parties under the terms
of this License.

d. If a facility in the modified Library refers to a function or a table of data to be supplied by an application
program that uses the facility, other than as an argument passed when the facility is invoked, then you
must make a good faith effort to ensure that, in the event an application does not supply such function
or table, the facility still operates, and performs whatever part of its purpose remains meaningful.
(For example, a function in a library to compute square roots has a purpose that is entirely well-defined
independent of the application. Therefore, Subsection 2d requires that any application-supplied function
or table used by this function must be optional: if the application does not supply it, the square root
function must still compute square roots.)

305www.balabit.com

Section 1

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived
from the Library, and can be reasonably considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather,
the intent is to exercise the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on
the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of
this License.

3.2.4. Section 3

You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given
copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the
ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of
the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do
not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public
License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

3.2.5. Section 4

You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable
form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding
machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent
access to copy the source code from the same place satisfies the requirement to distribute the source code, even
though third parties are not compelled to copy the source along with the object code.

3.2.6. Section 5

A program that contains no derivative of any portion of the Library, but is designed to work with the Library by
being compiled or linked with it, is called a “work that uses the Library”. Such a work, in isolation, is not a derivative
work of the Library, and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a derivative of the
Library (because it contains portions of the Library), rather than a “work that uses the library”. The executable is
therefore covered by this License. Section 6 states terms for distribution of such executables.

306www.balabit.com

Section 3

When a “work that uses the Library” uses material from a header file that is part of the Library, the object code for
the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially
significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to
be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and
small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether
it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the
terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked
directly with the Library itself.

3.2.7. Section 6

As an exception to the Sections above, you may also combine or link a “work that uses the Library” with the Library
to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided
that the terms permit modification of the work for the customer's own use and reverse engineering for debugging
such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and
its use are covered by this License. You must supply a copy of this License. If the work during execution displays
copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing
the user to the copy of this License. Also, you must do one of these things:

a. Accompany the work with the complete corresponding machine-readable source code for the Library
including whatever changes were used in the work (which must be distributed under Sections 1 and 2
above); and, if the work is an executable linked with the Library, with the complete machine-readable
“work that uses the Library”, as object code and/or source code, so that the user can modify the Library
and then relink to produce a modified executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the Library will not necessarily be able to
recompile the application to use the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that
(1) uses at run time a copy of the library already present on the user's computer system, rather than
copying library functions into the executable, and (2) will operate properly with a modified version of
the library, if the user installs one, as long as the modified version is interface-compatible with the
version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated place, offer equivalent
access to copy the above specified materials from the same place.

e. Verify that the user has already received a copy of these materials or that you have already sent this user
a copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility programs
needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need
not include anything that is normally distributed (in either source or binary form) with the major components

307www.balabit.com

Section 6

(compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not
normally accompany the operating system. Such a contradiction means you cannot use both them and the Library
together in an executable that you distribute.

3.2.8. Section 7

You may place library facilities that are a work based on the Library side-by-side in a single library together with
other library facilities not covered by this License, and distribute such a combined library, provided that the separate
distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided
that you do these two things:

a. Accompany the combined library with a copy of the same work based on the Library, uncombined with
any other library facilities. This must be distributed under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

3.2.9. Section 8

You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so long as such parties remain in full compliance.

3.2.10. Section 9

You are not required to accept this License, since you have not signed it. However, nothing else grants you permission
to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept
this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the
Library or works based on it.

3.2.11. Section 10

Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a
license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and
conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with this License.

3.2.12. Section 11

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited
to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute
so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a
consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free

308www.balabit.com

Section 7

redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the
section is intended to apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution
system which is implemented by public license practices. Many people have made generous contributions to the
wide range of software distributed through that system in reliance on consistent application of that system; it is up
to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee
cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

3.2.13. Section 12

If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Library under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only in or among countries not
thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

3.2.14. Section 13

The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License
which applies to it and “any later version”, you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by the Free Software Foundation.

3.2.15. Section 14

If you wish to incorporate parts of the Library into other free programs whose distribution conditions are
incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

3.2.16. NO WARRANTY Section 15

BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

309www.balabit.com

Section 12

FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

3.2.17. Section 16

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

3.3. How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making
it free software that everyone can redistribute and change. You can do so by permitting redistribution under these
terms (or, alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and
a pointer to where the full notice is found.

<one line to give the library's name and a brief idea of what it does.> Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option)
any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright
disclaimer” for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written
by James Random Hacker.

<signature of Ty Coon>, 1 April 1990 Ty Coon, President of Vice

310www.balabit.com

Section 16

That's all there is to it!

311www.balabit.com

How to Apply These Terms to Your New Libraries

Appendix 4. Creative Commons Attribution
Non-commercial No Derivatives (by-nc-nd) License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT
AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED
UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED. BY EXERCISING ANY RIGHTS TO
THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS
LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE
LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR
ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works,
such as a translation, adaptation, derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes cinematographic adaptations
or any other form in which the Work may be recast, transformed, or adapted including in any form
recognizably derived from the original, except that a work that constitutes a Collection will not be
considered an Adaptation for the purpose of this License. For the avoidance of doubt, where the
Work is a musical work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered an Adaptation for the purpose
of this License.

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies,
or performances, phonograms or broadcasts, or other works or subject matter other than works
listed in Section 1(f) below, which, by reason of the selection and arrangement of their contents,
constitute intellectual creations, in which the Work is included in its entirety in unmodified form
along with one or more other contributions, each constituting separate and independent works in
themselves, which together are assembled into a collective whole. A work that constitutes a Collection
will not be considered an Adaptation (as defined above) for the purposes of this License.

c. "Distribute" means to make available to the public the original and copies of the Work through sale
or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms
of this License.

e. "Original Author" means, in the case of a literary or artistic work, the individual, individuals, entity
or entities who created the Work or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers, musicians, dancers, and other persons
who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer being the person or legal entity
who first fixes the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms of this License including
without limitation any production in the literary, scientific and artistic domain, whatever may be the
mode or form of its expression including digital form, such as a book, pamphlet and other writing;

312www.balabit.com

a lecture, address, sermon or other work of the same nature; a dramatic or dramatico-musical work;
a choreographic work or entertainment in dumb show; a musical composition with or without words;
a cinematographic work to which are assimilated works expressed by a process analogous to
cinematography; a work of drawing, painting, architecture, sculpture, engraving or lithography; a
photographic work to which are assimilated works expressed by a process analogous to photography;
a work of applied art; an illustration, map, plan, sketch or three-dimensional work relative to
geography, topography, architecture or science; a performance; a broadcast; a phonogram; a
compilation of data to the extent it is protected as a copyrightable work; or a work performed by a
variety or circus performer to the extent it is not otherwise considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this License who has not previously
violated the terms of this License with respect to the Work, or who has received express permission
from the Licensor to exercise rights under this License despite a previous violation.

h. "Publicly Perform" means to perform public recitations of the Work and to communicate to the
public those public recitations, by any means or process, including by wire or wireless means or
public digital performances; to make available to the public Works in such a way that members of
the public may access these Works from a place and at a place individually chosen by them; to perform
the Work to the public by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to broadcast and rebroadcast
the Work by any means including signs, sounds or images.

i. "Reproduce" means to make copies of the Work by any means including without limitation by sound
or visual recordings and the right of fixation and reproducing fixations of the Work, including storage
of a protected performance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from
copyright or rights arising from limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,
royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise
the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce
the Work as incorporated in the Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated in Collections.
The above rights may be exercised in all media and formats whether now known or hereafter devised.
The above rights include the right to make such modifications as are technically necessary to exercise
the rights in other media and formats, but otherwise you have no rights to make Adaptations. Subject
to 8(f), all rights not expressly granted by Licensor are hereby reserved, including but not limited to the
rights set forth in Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the
following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You must
include a copy of, or the Uniform Resource Identifier (URI) for, this License with every copy of the
Work You Distribute or Publicly Perform. You may not offer or impose any terms on the Work
that restrict the terms of this License or the ability of the recipient of the Work to exercise the rights
granted to that recipient under the terms of the License. You may not sublicense the Work. You
must keep intact all notices that refer to this License and to the disclaimer of warranties with every

313www.balabit.com

copy of the Work You Distribute or Publicly Perform. When You Distribute or Publicly Perform
the Work, You may not impose any effective technological measures on the Work that restrict the
ability of a recipient of the Work from You to exercise the rights granted to that recipient under the
terms of the License. This Section 4(a) applies to the Work as incorporated in a Collection, but this
does not require the Collection apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You must, to the extent practicable,
remove from the Collection any credit as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner that is
primarily intended for or directed toward commercial advantage or private monetary compensation.
The exchange of the Work for other copyrighted works by means of digital file-sharing or otherwise
shall not be considered to be intended for or directed toward commercial advantage or private
monetary compensation, provided there is no payment of any monetary compensation in connection
with the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request has been
made pursuant to Section 4(a), keep intact all copyright notices for the Work and provide, reasonable
to the medium or means You are utilizing: (i) the name of the Original Author (or pseudonym, if
applicable) if supplied, and/or if the Original Author and/or Licensor designate another party or
parties (for example a sponsor institute, publishing entity, journal) for attribution ("Attribution
Parties") in Licensor's copyright notice, terms of service or by other reasonable means, the name of
such party or parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably practicable,
the URI, if any, that Licensor specifies to be associated with the Work, unless such URI does not
refer to the copyright notice or licensing information for the Work. The credit required by this
Section 4(c) may be implemented in any reasonable manner; provided, however, that in the case of
a Collection, at a minimum such credit will appear, if a credit for all contributing authors of Collection
appears, then as part of these credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only use the credit required by
this Section for the purpose of attribution in the manner set out above and, by exercising Your rights
under this License, You may not implicitly or explicitly assert or imply any connection with,
sponsorship or endorsement by the Original Author, Licensor and/or Attribution Parties, as
appropriate, of You or Your use of the Work, without the separate, express prior written permission
of the Original Author, Licensor and/or Attribution Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect
royalties through any statutory or compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any exercise by You of the rights granted
under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties
through any statutory or compulsory licensing scheme can be waived, the Licensor reserves the
exclusive right to collect such royalties for any exercise by You of the rights granted under this
License if Your exercise of such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b) and otherwise waives the right to collect royalties
through any statutory or compulsory licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties, whether individually
or, in the event that the Licensor is a member of a collecting society that administers voluntary
licensing schemes, via that society, from any exercise by You of the rights granted under this

314www.balabit.com

License that is for a purpose or use which is otherwise than noncommercial as permitted under
Section 4(b).

e. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable
law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as part of any
Collections, You must not distort, mutilate, modify or take other derogatory action in relation to the
Work which would be prejudicial to the Original Author's honor or reputation.

5. Representations, Warranties and Disclaimer UNLESS OTHERWISE MUTUALLY AGREED BY THE
PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK,
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES,
SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO
EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You
of the terms of this License. Individuals or entities who have received Collections from You under
this License, however, will not have their licenses terminated provided such individuals or entities
remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination
of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of
the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to
release the Work under different license terms or to stop distributing the Work at any time; provided,
however that any such election will not serve to withdraw this License (or any other license that has
been, or is required to be, granted under the terms of this License), and this License will continue
in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the
recipient a license to the Work on the same terms and conditions as the license granted to You under
this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to the minimum extent necessary
to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such waiver
or consent.

315www.balabit.com

d. This License constitutes the entire agreement between the parties with respect to the Work licensed
here. There are no understandings, agreements or representations with respect to the Work not
specified here. Licensor shall not be bound by any additional provisions that may appear in any
communication from You. This License may not be modified without the mutual written agreement
of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this License were drafted utilizing
the terminology of the Berne Convention for the Protection of Literary and Artistic Works (as
amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of
1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright
Convention (as revised on July 24, 1971). These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced according to the corresponding
provisions of the implementation of those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law includes additional rights not granted
under this License, such additional rights are deemed to be included in the License; this License is
not intended to restrict the license of any rights under applicable law.

316www.balabit.com

Glossary

alias IP An additional IP address assigned to an interface that already has an IP address.
The normal and alias IP addresses both refer to the same physical interface.

authentication The process of verifying the authenticity of a user or client before allowing access
to a network system or service.

auditing policy The auditing policy determines which events are logged on host running Microsoft
Windows operating systems.

BOM The byte order mark (BOM) is a Unicode character used to signal the byte-order
of the message text.

BSD-syslog protocol The old syslog protocol standard described in RFC 3164. Sometimes also referred
to as the legacy-syslog protocol.

CA A Certificate Authority (CA) is an institute that issues certificates.

certificate A certificate is a file that uniquely identifies its owner. Certificates contains
information identifying the owner of the certificate, a public key itself, the
expiration date of the certificate, the name of the CA that signed the certificate,
and some other data.

client mode In client mode, syslog-ng collects the local logs generated by the host and forwards
them through a network connection to the central syslog-ng server or to a relay.

destination A named collection of configured destination drivers.

destination driver A communication method used to send log messages.

destination, network A destination that sends log messages to a remote host (that is, a syslog-ng relay
or server) using a network connection.

destination, local A destination that transfers log messages within the host, for example writes them
to a file, or passes them to a log analyzing application.

disk buffer The Premium Edition of syslog-ng can store messages on the local hard disk if
the central log server or the network connection to the server becomes unavailable.

disk queue See disk buffer.

domain name The name of a network, for example: balabit.com.

embedded log statement A log statement that is included in another log statement to create a complex log
path.

filter An expression to select messages.

317www.balabit.com

http://tools.ietf.org/search/rfc3164

gateway A device that connects two or more parts of the network, for example: your local
intranet and the external network (the Internet). Gateways act as entrances into
other networks.

high availability High availability uses a second syslog-ng server unit to ensure that the logs are
received even if the first unit breaks down.

host A computer connected to the network.

hostname A name that identifies a host on the network.

IETF-syslog protocol The syslog-protocol standard developed by the Internet Engineering Task Force
(IETF), described in RFC 5424-5427.

key pair A private key and its related public key. The private key is known only to the
owner; the public key can be freely distributed. Information encrypted with the
private key can only be decrypted using the public key.

log path A combination of sources, filters, parsers, rewrite rules, and destinations: syslog-ng
examines all messages arriving to the sources of the logpath and sends the
messages matching all filters to the defined destinations.

LSH See log source host.

log source host A host or network device (including syslog-ng clients and relays) that sends logs
to the syslog-ng server. Log source hosts can be servers, routers, desktop
computers, or other devices capable of sending syslog messages or running
syslog-ng.

log statement See log path.

name server A network computer storing the IP addresses corresponding to domain names.

Oracle Instant Client The Oracle Instant Client is a small set of libraries, which allow you to connect
to an Oracle Database. A subset of the full Oracle Client, it requires minimal
installation but has full functionality.

output buffer A part of the memory of the host where syslog-ng stores outgoing log messages
if the destination cannot accept the messages immediately.

output queue Messages from the output queue are sent to the target syslog-ng server. The
syslog-ng application puts the outgoing messages directly into the output queue,
unless the output queue is full. The output queue can hold 64 messages, this is a
fixed value and cannot be modified.

overflow queue See output buffer.

parser A set of rules to segment messages into named fields or columns.

318www.balabit.com

http://tools.ietf.org/search/rfc5424

ping A command that sends a message from a host to another host over a network
to test connectivity and packet loss.

port A number ranging from 1 to 65535 that identifies the destination application of
the transmitted data. For example: SSH commonly uses port 22, web servers
(HTTP) use port 80, and so on.

Public-key authentication An authentication method that uses encryption key pairs to verify the identity of
a user or a client.

regular expression A regular expression is a string that describes or matches a set of strings. The
syslog-ng application supports extended regular expressions (also called POSIX
modern regular expressions).

relay mode In relay mode, syslog-ng receives logs through the network from syslog-ng clients
and forwards them to the central syslog-ng server using a network connection.

rewrite rule A set of rules to modify selected elements of a log message.

template A user-defined structure that can be used to restructure log messages or
automatically generate file names.

server mode In server mode, syslog-ng acts as a central log-collecting server. It receives
messages from syslog-ng clients and relays over the network, and stores them
locally in files, or passes them to other applications, for example, log analyzers.

source A named collection of configured source drivers.

source, network A source that receives log messages from a remote host using a network
connection. The following sources are network sources: tcp(), tcp6(), udp(),
udp6().

source, local A source that receives log messages from within the host, for example, from a
file.

source driver A communication method used to receive log messages.

SSL See TLS.

syslog-ng The syslog-ng application is a flexible and highly scalable system logging
application, typically used to manage log messages and implement centralized
logging.

syslog-ng agent The syslog-ng Agent for Windows is a commercial log collector and forwarder
application for the Microsoft Windows platform. It collects the log messages of
the Windows-based host and forwards them to a syslog-ng server using regular
or SSL-encrypted TCP connections.

syslog-ng client A host running syslog-ng in client mode.

319www.balabit.com

syslog-ng Premium Edition The syslog-ng Premium Edition is the commercial version of the open-source
application. It offers additional features, like encrypted message transfer and an
agent for Microsoft Windows platforms.

syslog-ng relay A host running syslog-ng in relay mode.

syslog-ng server A host running syslog-ng in server mode.

TLS Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL),
are cryptographic protocols which provide secure communications on the Internet.
The syslog-ng Open Source Edition application can encrypt the communication
between the clients and the server using TLS to prevent unauthorized access to
sensitive log messages.

traceroute A command that shows all routing steps (the path of a message) between two
hosts.

unix domain socket A Unix domain socket (UDS) or IPC socket (inter-procedure call socket) is a
virtual socket, used for inter-process communication.

320www.balabit.com

List of syslog-ng OSE
parameters

Symbols
$(context-length), 249, 258
$(hash), 222
$(md5), $(md4), 222
$(sha1), $(sha256), $(sha512), 222
$LOGHOST, 216
$TZ, $C_TZ, $R_TZ, $S_TZ, 219
${.SDATA.SDID.SDNAME}, 217
${AMPM}, 214
${BSDTAG}, 214
${DATE}, ${C_DATE}, ${R_DATE}, ${S_DATE},
214
${DAY}, ${C_DAY}, ${R_DAY}, ${S_DAY}, 214
${FACILITY_NUM}, 215
${FACILITY}, 214
${FULLDATE}, ${C_FULLDATE},
${R_FULLDATE}, ${S_FULLDATE}, 215
${FULLHOST_FROM}, 215
${FULLHOST}, 215
${HOST_FROM}, 216
${HOST}, 215
${HOUR12}, ${C_HOUR12}, ${R_HOUR12},
${S_HOUR12}, 215
${HOUR}, ${C_HOUR}, ${R_HOUR}, ${S_HOUR},
215
${ISODATE}, ${C_ISODATE}, ${R_ISODATE},
${S_ISODATE}, 216
${LEVEL_NUM}, 216
${LEVEL}, 217
${MIN}, ${C_MIN}, ${R_MIN}, ${S_MIN}, 216
${MONTH_ABBREV}, ${C_MONTH_ABBREV},
${R_MONTH_ABBREV}, ${S_MONTH_ABBREV},
216
${MONTH_NAME}, ${C_MONTH_NAME},
${R_MONTH_NAME}, ${S_MONTH_NAME}, 216
${MONTH_WEEK}, ${C_MONTH_WEEK},
${R_MONTH_WEEK}, ${S_MONTH_WEEK}, 216
${MONTH}, ${C_MONTH}, ${R_MONTH},
${S_MONTH}, 216
${MSEC}, ${C_MSEC}, ${R_MSEC}, ${S_MSEC},
216

${MSGHDR}, 217
${MSGID}, 217
${MSGONLY}, 217
${MSG} or ${MESSAGE}, 216
${PID}, 217
${PRIORITY}, 217
${PRI}, 217
${PROGRAM}, 217
${SDATA}, 217
${SEC}, ${C_SEC}, ${R_SEC}, ${S_SEC}, 218
${SEQNUM}, 218
${SOURCEIP}, 218
${STAMP}, ${C_STAMP}, ${R_STAMP},
${S_STAMP}, 218
${SYSUPTIME}, 218
${TAGS}, 219
${TAG}, 218
${TZOFFSET}, ${C_TZOFFSET}, ${R_TZOFFSET},
${S_TZOFFSET}, 219
${UNIXTIME}, ${C_UNIXTIME},
${R_UNIXTIME}, ${S_UNIXTIME}, 219
${USEC}, ${C_USEC}, ${R_USEC}, ${S_USEC}, 219
${WEEKDAY}, ${C_WEEKDAY},
${R_WEEKDAY}, ${S_WEEKDAY}, 219
${WEEK_ABBREV}, ${C_WEEK_ABBREV},
${R_WEEK_ABBREV}, ${S_WEEK_ABBREV}, 219
$ { W E E K _ D A Y _ N A M E } ,
$ { C _ W E E K _ D A Y _ N A M E } ,
$ { R _ W E E K _ D A Y _ N A M E } ,
${S_WEEK_DAY_NAME}, 219
${WEEK_DAY}, ${C_WEEK_DAY},
${R_WEEK_DAY}, ${S_WEEK_DAY}, 219
${WEEK}, ${C_WEEK}, ${R_WEEK}, ${S_WEEK},
219
${YEAR}, ${C_YEAR}, ${R_YEAR}, ${S_YEAR},
219
--caps, 285
--cfgfile, 285
--chroot, 285
--debug, 285
--default-modules, 285
--enable-core, 286
--fd-limit, 286
--foreground, 286
--group, 286
--help, 286
--module-registry, 286
--no-caps, 286

321www.balabit.com

--persist-file, 286
--pidfile, 286
--preprocess-into, 286
--process-mode, 286
--stderr, 286
--syntax-only, 287
--user, 287
--verbose, 287
--version, 287
--worker-threads, 287
.SDATA.SDID.SDNAME, 217
@ANYSTRING@, 251
@define, 48
@distance, 247
@EMAIL@, 251
@ESTRING@, 252
@FLOAT@, 252
@HOSTNAME@, 252
@include, 50
@IPv4, 252
@IPv6@, 252
@IPvANY@, 252
@LLADDR@, 252
@MACADDR@, 252
@module, 50
@NUMBER@, 252
@PCRE@, 253
@QSTRING@, 253
@SET@, 253
@STRING@, 253

A
action, 258
actions, 247, 258
add-prefix(), 22
addition, 224
AMPM, 214
AND, 183
autoload-compiled-modules, 50

B
bad_hostname(), 191
bcc()

smtp(), 139
block, 51
block arguments, 52
body(), 109

smtp(), 139

BSDTAG, 214

C
caps, 285
catchall, 177
ca_dir(), 208
cc()

smtp(), 140
cert_file(), 208
cfgfile, 285
chain_hostnames(), 191
channel, 47, 176
check_hostname(), 192
chroot, 285
cipher_suite(), 208
class, 256
clear-tag(), 229
collection(), 119
columns(), 147
condition, 258
condition(), 229
context-id, 256
context-scope, 256
context-timeout, 256
create_dirs(), 112, 192
crl_dir(), 209
csv-parser, 236
Custom macros, 214
C_DATE, R_DATE, S_DATE, 214

D
database(), 119, 147
DAY, C_DAY, R_DAY, S_DAY, 214
dbd-option(), 147
debug, 285
default-facility(), 58
default-modules, 285
default-priority(), 58
delimiters, 236
description — pattern, 257
description — ruleset, 254
dir_group(), 112, 192
dir_owner(), 113, 192
dir_perm(), 113, 192
division, 224
dns_cache(), 192
dns_cache_expire(), 193
dns_cache_expire_failed(), 193

322www.balabit.com

dns_cache_hosts(), 193
dns_cache_size(), 193
dont-create-tables, 148
door(), 79
drop-invalid, 236

E
echo, 220
enable-core, 286
encoding(), 58, 93, 101
eq, 184
escape-backslash, 236
escape-double-char, 236
escape-none, 236
example, 257
examples, 257
exchange(), 109
exchange-declare(), 109
exchange-type(), 109
exclude(), 18
explicit-commits, 148

F
FACILITY, 214
facility(), 187-188
FACILITY_NUM, 215
fallback, 177
fd-limit, 286
file, 74
file(), 58
file-template(), 193
filter(), 188
final, 178
flags, 173, 178

empty-lines, 59, 63, 70, 75, 79, 83, 94, 101
expect-hostnames, 59, 63, 70, 75, 79, 83, 94, 101
kernel, 59, 63, 70, 75, 79, 83, 94, 101
no-hostname, 59, 63, 70, 75, 79, 83, 94, 101
no-multi-line, 59, 63, 70, 75, 79, 83, 94, 101
no-parse, 59, 63, 70, 75, 79, 83, 94, 101
no_multi_line, 113, 122, 130, 135, 153, 161, 168
store-legacy-msghdr, 59, 63, 70, 75, 79, 83, 94, 101
syslog-protocol, 113, 122, 130, 135, 153, 161, 168
validate-utf8, 59, 63, 70, 75, 79, 83, 94, 101

flags(), 59, 63, 70, 75, 79, 83, 94, 101, 113, 122, 130, 135,
153, 161, 168, 236

for SQL destinations, 148
flow-control, 178, 181

flush_lines(), 113, 122, 130, 135, 148, 154, 161, 168, 193
flush_timeout(), 114, 123, 130, 135, 148, 154, 162, 168,
194
follow_freq(), 60, 71, 74, 76, 80
foreground, 286
format-json, 220
frac_digits(), 114, 119, 123, 130, 135, 149, 154, 162, 169,
194
from()

smtp(), 140
fsync(), 114
FULLDATE, C_FULLDATE, R_FULLDATE,
S_FULLDATE, 215
FULLHOST, 215
FULLHOST_FROM, 215

G
ge, 184
geoip, 221
glob, 232
global, 231
global — context-scope, 256
greedy, 237
grep, 221
group, 286
group(), 102, 114, 131, 194
gt, 184

H
header()

smtp(), 141
help, 286
HOST, 215
host — context-scope, 256
host(), 110, 120, 149, 188

smtp(), 141
HOST_FROM, 216
host_override(), 64, 85, 95, 102
HOUR, C_HOUR, R_HOUR, S_HOUR, 215
HOUR12, C_HOUR12, R_HOUR12, S_HOUR12, 215

I
id — rule, 256
id — ruleset, 254
if, 222
ignore-case, 231
indent-multi-line, 223

323www.balabit.com

indexes(), 149
inherit-properties, 248, 259
inject-mode, 247
ip() or localip(), 64, 85, 95
ip-protocol(), 64, 85
ipv4-to-int, 223
ip_tos(), 64, 85, 123, 154, 162
ip_ttl(), 64, 85, 123, 154, 162
ISODATE, C_ISODATE, R_ISODATE, S_ISODATE,
216

J
junction, 176

K
keep-alive(), 65, 85, 95, 103, 123, 154, 162, 169
keep_hostname(), 65, 86, 95, 194
keep_timestamp(), 60, 65, 71, 76, 80, 86, 96, 103, 195
key(), 18
key_file(), 209

L
le, 184
length, 224
LEVEL, 217
level() or priority(), 188
LEVEL_NUM, 216
localip(), 124, 155, 162
localport(), 124, 155, 163
local_time_zone(), 114, 149
LOGHOST, 216
log_fetch_limit(), 60, 66, 72, 77, 81, 86, 96, 103
log_fifo_size(), 115, 120, 124, 131, 136, 141, 150, 155,
169, 195
log_iw_size(), 60, 66, 72, 77, 81, 87, 96, 103
log_msg_size(), 61, 66, 72, 77, 81, 87, 97, 103, 195
log_prefix() (DEPRECATED), 61, 66, 72, 77, 81, 87,
97, 104
lt, 184

M
mark(), 195
marker, 238
mark_freq(), 124, 155, 196
mark_mode(), 115, 124, 131, 136, 155, 163, 170, 196
match, 258
match(), 189

max-connections(), 66, 87, 97, 104
message, 259
message(), 189
MIN, C_MIN, R_MIN, S_MIN, 216
module-registry, 286
modulus, 224
MONTH, C_MONTH, R_MONTH, S_MONTH, 216
MONTH_ABBREV, C_MONTH_ABBREV,
R_MONTH_ABBREV, S_MONTH_ABBREV, 216
MONTH_NAME, C_MONTH_NAME,
R_MONTH_NAME, S_MONTH_NAME, 216
MONTH_WEEK, R_MONTH_WEEK,
R_MONTH_WEEK, S_MONTH_WEEK, 216
MSEC, C_MSEC, R_MSEC, S_MSEC, 216
MSG or MESSAGE, 216
MSGHDR, 217
MSGID, 217
MSGONLY, 217
multiplication, 224

N
name — pattern value, 257
name — ruleset, 254
name — test_value, 258
name — value — action, 259
ne, 184
netmask(), 189
no-caps, 286
nobackref, 231
normalize_hostnames(), 197
NOT, 183
null(), 150
numerical operations, 224

O
optional(), 61, 72, 77, 81, 104
OR, 183
overwrite_if_older(), 116
owner(), 104, 116, 132, 197

P
pacct(), 74
pad_size(), 61, 67, 73, 78, 82, 87, 97, 104, 116, 132
pair(), 19
password(), 110, 150
path(), 120
pattern — rule, 257

324www.balabit.com

pattern — ruleset, 254
patterndb, 254
patterns, 254
patterns — rule, 257
pcre, 231
peer_verify(), 209
perm(), 105, 116, 132, 197
persist-file, 286
persistent(), 110
PID, 217
pidfile, 286
pipe(), 73
port(), 110, 120, 151

smtp(), 141
port() or destport(), 125, 156, 164
port() or localport(), 67, 88, 97
posix, 231
prefix, 239
preprocess-into, 286
PRI, 217
PRIORITY, 217
process — context-scope, 256
process-mode, 286
program, 78
PROGRAM, 217
program — context-scope, 256
program(), 189
program_override(), 61, 67, 73, 78, 82, 88, 98, 105
proto-template(), 197
provider, 255
pubdate, 254

Q
quote-pairs(), 237

R
rate, 258
recv_time_zone(), 198
rekey(), 20
replace(), 22
reply-to()

smtp(), 141
retry_sql_inserts, 151
rewrite(), 227, 229
root, 52
routing-key(), 110
rule, 255
rules, 255

ruleset, 254

S
safe-mode(), 120
sanitize, 224
scope(), 24
SDATA, 217
SEC, C_SEC, R_SEC, S_SEC, 218
send_time_zone(), 198
SEQNUM, 218
servers(), 121
session-statements(), 151
set(), 228
set-tag(), 229
shift(), 22
smtp()

bcc(), 139
body(), 139
cc(), 140
from(), 140
header(), 141
host(), 141
port(), 141
reply-to(), 141
subject(), 142
to(), 142

source(), 189
SOURCEIP, 218
so_broadcast(), 67, 88, 125, 157, 164, 169
so_keepalive(), 67, 88, 98, 105, 126, 157, 164, 169
so_rcvbuf(), 68, 88, 98, 105, 126, 157, 164, 171
so_sndbuf(), 68, 89, 126, 157, 165, 171
spoof_source(), 126, 157, 165
STAMP, C_STAMP, R_STAMP, S_STAMP, 218
stats_freq(), 198
stats_level(), 198
stderr, 286
store-matches, 231
string, 232
strip, 225
strip-whitespace, 237
subject()

smtp(), 142
subst(), 227
substr, 225
substraction, 224
suppress(), 117, 126, 133, 137, 157, 165, 171
sync() or sync_freq() (DEPRECATED), 199

325www.balabit.com

syntax-only, 287
syslog-parser, 233
system(), 90
SYSUPTIME, 218

T
table(), 151
TAG, 218
tag — rule, 259
TAGS, 219
tags — rule, 259
tags(), 57, 62, 68, 73, 78, 82, 89, 100, 105, 190, 244
tcp-keep-alive(), 68, 89, 98
tcp-keepalive-intvl(), 98, 127, 158, 165
tcp-keepalive-probes(), 99, 127, 158, 166
tcp-keepalive-time(), 99, 127, 158, 166
template(), 117, 128, 133, 137, 159, 166, 171, 237
template_escape(), 117, 128, 133, 137, 159, 167, 171
test_message, 258
test_value, 258
test_values, 258
tfhash, 222
threaded, 64, 84, 95, 113
threaded(), 199
throttle(), 117, 128, 133, 137, 159, 167, 171
timeout, 259
time_reap(), 118, 199
time_reopen(), 199
time_sleep(), 199
time_zone(), 62, 68, 73, 78, 82, 89, 100, 106, 117, 121,
128, 133, 138, 151, 159, 167, 172, 199
tls(), 69, 90, 100, 129, 160, 167
to()

smtp(), 142
transport(), 69, 89, 129, 160
trigger, 258
trusted_dn(), 209
trusted_keys(), 210
ts_format(), 118, 129, 134, 138, 160, 167, 172, 200
type(), 152, 230
TZ, C_TZ, R_TZ, S_TZ, 219
TZOFFSET, C_TZOFFSET, R_TZOFFSET,
S_TZOFFSET, 219

U
unicode, 232
UNIXTIME, C_UNIXTIME, R_UNIXTIME,
S_UNIXTIME, 219

url — pattern, 257
url — ruleset, 254
urls — pattern, 257
USEC, C_USEC, R_USEC, S_USEC, 219
user, 287
username(), 110, 152
use_dns(), 65, 69, 86, 90, 96, 100, 194, 200
use_fqdn(), 69, 90, 100, 200
use_time_recvd() (DEPRECATED), 200
utf8, 231-232
uuid, 226

V
value — action, 259
value — pattern, 257
value(), 189
value-pairs(), 17, 111, 121
values — action, 259
values — pattern, 257
values(), 152
verbose, 287
version, 254, 287
vhost(), 111

W
WEEK, C_WEEK, R_WEEK, S_WEEK, 219
WEEKDAY, C_WEEKDAY, R_WEEKDAY,
S_WEEKDAY, 219
WEEK_ABBREV, C_WEEK_ABBREV,
R_WEEK_ABBREV, S_WEEK_ABBREV, 219
WEEK_DAY, C_WEEK_DAY, R_WEEK_DAY,
S_WEEK_DAY, 219
WEEK_DAY_NAME, C_WEEK_DAY_NAME,
R_WEEK_DAY_NAME, S_WEEK_DAY_NAME,
219
worker-threads, 287

Y
YEAR, C_YEAR, R_YEAR, S_YEAR, 219

326www.balabit.com

Index

Symbols
$(context-length), 249, 258
$(hash), 222
$(md5), $(md4), 222
$(sha1), $(sha256), $(sha512), 222
$LOGHOST, 216
$TZ, $C_TZ, $R_TZ, $S_TZ, 219
${.SDATA.SDID.SDNAME}, 217
${AMPM}, 214
${BSDTAG}, 214
${DATE}, ${C_DATE}, ${R_DATE}, ${S_DATE},
214
${DAY}, ${C_DAY}, ${R_DAY}, ${S_DAY}, 214
${FACILITY_NUM}, 215
${FACILITY}, 214
${FULLDATE}, ${C_FULLDATE},
${R_FULLDATE}, ${S_FULLDATE}, 215
${FULLHOST_FROM}, 215
${FULLHOST}, 215
${HOST_FROM}, 216
${HOST}, 215
${HOUR12}, ${C_HOUR12}, ${R_HOUR12},
${S_HOUR12}, 215
${HOUR}, ${C_HOUR}, ${R_HOUR}, ${S_HOUR},
215
${ISODATE}, ${C_ISODATE}, ${R_ISODATE},
${S_ISODATE}, 216
${LEVEL_NUM}, 216
${LEVEL}, 217
${MIN}, ${C_MIN}, ${R_MIN}, ${S_MIN}, 216
${MONTH_ABBREV}, ${C_MONTH_ABBREV},
${R_MONTH_ABBREV}, ${S_MONTH_ABBREV},
216
${MONTH_NAME}, ${C_MONTH_NAME},
${R_MONTH_NAME}, ${S_MONTH_NAME}, 216
${MONTH_WEEK}, ${C_MONTH_WEEK},
${R_MONTH_WEEK}, ${S_MONTH_WEEK}, 216
${MONTH}, ${C_MONTH}, ${R_MONTH},
${S_MONTH}, 216
${MSEC}, ${C_MSEC}, ${R_MSEC}, ${S_MSEC},
216
${MSGHDR}, 217
${MSGID}, 217

${MSGONLY}, 217
${MSG} or ${MESSAGE}, 216
${PID}, 217
${PRIORITY}, 217
${PRI}, 217
${PROGRAM}, 217
${SDATA}, 217
${SEC}, ${C_SEC}, ${R_SEC}, ${S_SEC}, 218
${SEQNUM}, 218
${SOURCEIP}, 218
${STAMP}, ${C_STAMP}, ${R_STAMP},
${S_STAMP}, 218
${SYSUPTIME}, 218
${TAGS}, 219
${TAG}, 218
${TZOFFSET}, ${C_TZOFFSET}, ${R_TZOFFSET},
${S_TZOFFSET}, 219
${UNIXTIME}, ${C_UNIXTIME},
${R_UNIXTIME}, ${S_UNIXTIME}, 219
${USEC}, ${C_USEC}, ${R_USEC}, ${S_USEC}, 219
${WEEKDAY}, ${C_WEEKDAY},
${R_WEEKDAY}, ${S_WEEKDAY}, 219
${WEEK_ABBREV}, ${C_WEEK_ABBREV},
${R_WEEK_ABBREV}, ${S_WEEK_ABBREV}, 219
$ { W E E K _ D A Y _ N A M E } ,
$ { C _ W E E K _ D A Y _ N A M E } ,
$ { R _ W E E K _ D A Y _ N A M E } ,
${S_WEEK_DAY_NAME}, 219
${WEEK_DAY}, ${C_WEEK_DAY},
${R_WEEK_DAY}, ${S_WEEK_DAY}, 219
${WEEK}, ${C_WEEK}, ${R_WEEK}, ${S_WEEK},
219
${YEAR}, ${C_YEAR}, ${R_YEAR}, ${S_YEAR},
219
--caps, 285
--cfgfile, 285
--chroot, 285
--debug, 285
--default-modules, 285
--enable-core, 286
--fd-limit, 286
--foreground, 286
--group, 286
--help, 286
--module-registry, 286
--no-caps, 286
--persist-file, 286
--pidfile, 286

327www.balabit.com

--preprocess-into, 286
--process-mode, 286
--stderr, 286
--syntax-only, 287
--user, 287
--verbose, 287
--version, 287
--worker-threads, 287
.SDATA.SDID.SDNAME, 217
@ANYSTRING@, 251
@define, 48
@distance, 247
@EMAIL@, 251
@ESTRING@, 252
@FLOAT@, 252
@HOSTNAME@, 252
@include, 50
@IPv4, 252
@IPv6@, 252
@IPvANY@, 252
@LLADDR@, 252
@MACADDR@, 252
@module, 50
@NUMBER@, 252
@PCRE@, 253
@QSTRING@, 253
@SET@, 253
@STRING@, 253

A
action, 258
actions, 247, 258

conditional actions, 249
context-length, 258
external actions, 249
message correlation, 250

add-prefix(), 22
addition, 224
alerting, 247
AMPM, 214
AND, 183
artificial ignorance

message classification, 250
authentication, 202-203
autoload-compiled-modules, 50

B
bad_hostname(), 191

batch processing, 270
bcc()

smtp(), 139
block, 51
block arguments, 52
body(), 109

smtp(), 139
boolean operators, 183
BSDTAG, 214

C
caps, 285
catchall, 177
ca_dir(), 208
cc()

smtp(), 140
certificates, 202
cert_file(), 208
cfgfile, 285
chain_hostnames(), 191
channel, 47, 176
channels, 47
check_hostname(), 192
chroot, 285
chroots, 272
cipher_suite(), 208
Cisco sequence number, 218
Cisco timestamp, 218
class, 256
classifying messages

concepts of, 240
configuration, 243
creating databases, 253
filtering, 244
pattern matching concepts, 242

clear-tag(), 229
client mode, 6
collection(), 119
columns(), 147
comparing values, 184
compiling syslog-ng OSE, 28
condition, 258
condition(), 229
conditional rewrites, 229
configuration file

default configuration, 38-39
including other files, 50

configuration snippets, 51

328www.balabit.com

context of messages, 246
context-id, 256
context-scope, 256
context-timeout, 256
Coordinated Universal Time, 9
core files, 268
correlating messages, 246
create_dirs(), 112, 192
creating SDATA fields, 228
crl_dir(), 209
CSV parsers, 235
csv-parser, 236
CSV-values, 234
Custom macros, 214
C_DATE, R_DATE, S_DATE, 214

D
database(), 119, 147
DAY, C_DAY, R_DAY, S_DAY, 214
daylight saving changes, 8
dbd-option(), 147
debug, 285
default-facility(), 58
default-modules, 285
default-priority(), 58
deleting syslog-ng OSE, 31
delimiters, 236
description — pattern, 257
description — ruleset, 254
destination drivers, 8, 107

amqp() driver, 108-109
database driver, 142, 147
file() driver, 111-112
list of, 108, 292
mongodb() driver, 118-119
network() driver, 122
pipe() driver, 129
program() driver, 134-135
smtp() driver, 138-139
sql() driver, 142, 147
syslog() driver, 152-153
tcp() driver, 160-161
tcp6() driver, 160-161
udp() driver, 160-161
udp6() driver, 160-161
unix-dgram() driver, 167-168
unix-stream() driver, 167-168
usertty() driver, 172

destinations, 4, 8, 107, 288
defining, 54, 107
FreeTDS configuration, 31
Microsoft SQL Server configuration, 31
MSSQL configuration, 31
sql() configuration, 143-145, 150

dir_group(), 112, 192
dir_owner(), 113, 192
dir_perm(), 113, 192
discarding messages, 190
division, 224
dns_cache(), 192
dns_cache_expire(), 193
dns_cache_expire_failed(), 193
dns_cache_hosts(), 193
dns_cache_size(), 193
dont-create-tables, 148
door(), 79
download

pattern databases, 245
drop-invalid, 236
dropping messages, 190

E
echo, 220
embedded log statements, 174
enable-core, 286
encoding(), 58, 93, 101
encrypting log messages, 202-203
environmental variables, 48
eq, 184
error solving, 267
escape-backslash, 236
escape-double-char, 236
escape-none, 236
escaping special characters, 230
example, 257
examples, 257
exchange(), 109
exchange-declare(), 109
exchange-type(), 109
exclude(), 18
explicit-commits, 148
extended timestamp format, 218

F
facilities, 12, 14, 188, 270
FACILITY, 214

329www.balabit.com

facility(), 187-188
FACILITY_NUM, 215
fail-over, 10
failure script, 269
fallback, 177
fd limit, 112
fd-limit, 286
file, 74
file descriptors, 112
file(), 58
file-template(), 193
filter functions

list of, 187, 292
filter(), 188
filtering

.classifier_class, 244
on message class, 244

filtering rewrites, 229
filters, 4, 8, 183, 232, 271, 288

AND, OR, NOT, 183
boolean operators, 183
comparing values, 184
control characters, 186
defining, 183
facilities, , 187
facility and priority (level) ranges, 188
priorities, 188
reference, 186
tags, 186
wildcards, 185

final, 178
flags, 173, 178

empty-lines, 59, 63, 70, 75, 79, 83, 94, 101
expect-hostnames, 59, 63, 70, 75, 79, 83, 94, 101
kernel, 59, 63, 70, 75, 79, 83, 94, 101
no-hostname, 59, 63, 70, 75, 79, 83, 94, 101
no-multi-line, 59, 63, 70, 75, 79, 83, 94, 101
no-parse, 59, 63, 70, 75, 79, 83, 94, 101
no_multi_line, 113, 122, 130, 135, 153, 161, 168
store-legacy-msghdr, 59, 63, 70, 75, 79, 83, 94, 101
syslog-protocol, 113, 122, 130, 135, 153, 161, 168
validate-utf8, 59, 63, 70, 75, 79, 83, 94, 101

flags(), 59, 63, 70, 75, 79, 83, 94, 101, 113, 122, 130, 135,
153, 161, 168, 236

for SQL destinations, 148
flow-control, 178, 181

example, 182
hard, 181

multiple destinations, 181
soft, 180

flush_lines(), 113, 122, 130, 135, 148, 154, 161, 168, 193
flush_timeout(), 114, 123, 130, 135, 148, 154, 162, 168,
194
follow_freq(), 60, 71, 74, 76, 80
foreground, 286
format-json, 220
formatting messages, 211
frac_digits(), 114, 119, 123, 130, 135, 149, 154, 162, 169,
194
from()

smtp(), 140
fsync(), 114
FULLDATE, C_FULLDATE, R_FULLDATE,
S_FULLDATE, 215
FULLHOST, 215
FULLHOST_FROM, 215

G
ge, 184
generating alerts, 247
geoip, 221
glob, 232
glob patterns, 232
global, 231
global objects, 7
global options, 191

reference, 191
global variables, 48
global — context-scope, 256
greedy, 237
grep, 221
group, 286
group(), 102, 114, 131, 194
gt, 184

H
hard macros, 16, 213
header()

smtp(), 141
help, 286
HOST, 215
host — context-scope, 256
host(), 110, 120, 149, 188

smtp(), 141
HOST_FROM, 216
host_override(), 64, 85, 95, 102

330www.balabit.com

HOUR, C_HOUR, R_HOUR, S_HOUR, 215
HOUR12, C_HOUR12, R_HOUR12, S_HOUR12, 215

I
id — rule, 256
id — ruleset, 254
if, 222
ignore-case, 231
indent-multi-line, 223
indexes(), 149
inherit-properties, 248, 259
inject-mode, 247
installing syslog-ng, 28
installing syslog-ng OSE from source, 28
ip() or localip(), 64, 85, 95
ip-protocol(), 64, 85
ipv4-to-int, 223
ip_tos(), 64, 85, 123, 154, 162
ip_ttl(), 64, 85, 123, 154, 162
ISODATE, C_ISODATE, R_ISODATE, S_ISODATE,
216

J
JavaScript Object Notation, 220
JSON, 220
JSON parsers, 237
junction, 176
junctions, 176

K
keep-alive(), 65, 85, 95, 103, 123, 154, 162, 169
keep_hostname(), 65, 86, 95, 194
keep_timestamp(), 60, 65, 71, 76, 80, 86, 96, 103, 195
key(), 18
key_file(), 209
klogd, 58
kmsg, 57

L
le, 184
length, 224
LEVEL, 217
level() or priority(), 188
LEVEL_NUM, 216
local time, 12, 14
localip(), 124, 155, 162
localport(), 124, 155, 163

local_time_zone(), 114, 149
log messages, representation, 15
log messages, structure, 10

BSD-syslog protocol, 10
IETF-syslog protocol, 12
legacy-syslog protocol, 10
RFC 3164, 10
RFC 5424, 12

log paths, 4, 173, 288
defining, 173
flags, 173, 178
flow-control, 178, 181-182

log pipes
embedded log statements, 174

log statements, 8
embedded, 174
log paths, 4, 288

log statistics, 261
on unix-socket, 261

logging procedure, 4
LOGHOST, 216
logrotate, 112
log_fetch_limit(), 60, 66, 72, 77, 81, 86, 96, 103
log_fifo_size(), 115, 120, 124, 131, 136, 141, 150, 155,
169, 195
log_iw_size(), 60, 66, 72, 77, 81, 87, 96, 103
log_msg_size(), 61, 66, 72, 77, 81, 87, 97, 103, 195
log_prefix() (DEPRECATED), 61, 66, 72, 77, 81, 87,
97, 104
losing messages, 267
lt, 184

M
macros, 8, 211

date-related, 213
default value, 212
hard, 16
hard and soft macros, 213
in filenames, 213
patterndb tags, 219
read-only, 16
reference, 214
rewritable, 16
SDATA, 217
soft, 16

manipulating tags (see modifying tags)
mark(), 195
marker, 238

331www.balabit.com

mark_freq(), 124, 155, 196
mark_mode(), 115, 124, 131, 136, 155, 163, 170, 196
match, 258
match(), 189
max-connections(), 66, 87, 97, 104
maximal message size, 195
message, 259

facilities, 12, 14
ID, 218
statistics, 261

message classification, 243-244, 253
message context, 246
message correlation, 246
message counters, 261
message facilities, 188
message filtering

using parsers, 244
message loss, 267
message parsing, 233, 243-244
message statistics, 261
message templates, 211
message triggers, 247
message(), 189
Microsoft SQL

sql() configuration, 145
Microsoft SQL Server configuration, 31
MIN, C_MIN, R_MIN, S_MIN, 216
modes of operation, 6

client mode, 6
relay mode, 7
server mode, 7

modifying SDATA, 228
modifying tags, 229
module-registry, 286
modules, 49-50
modulus, 224
MONTH, C_MONTH, R_MONTH, S_MONTH, 216
MONTH_ABBREV, C_MONTH_ABBREV,
R_MONTH_ABBREV, S_MONTH_ABBREV, 216
MONTH_NAME, C_MONTH_NAME,
R_MONTH_NAME, S_MONTH_NAME, 216
MONTH_WEEK, R_MONTH_WEEK,
R_MONTH_WEEK, S_MONTH_WEEK, 216
MSEC, C_MSEC, R_MSEC, S_MSEC, 216
MSG or MESSAGE, 216
MSGHDR, 217
MSGID, 217
MSGONLY, 217

MSSQL
sql() configuration, 145

multiplication, 224
multithreading in syslog-ng OSE, 264
mutual authentication, 202, 205

N
name resolution, 270-271

local, 272
name — pattern value, 257
name — ruleset, 254
name — test_value, 258
name — value — action, 259
ne, 184
netmask(), 189
no-caps, 286
nobackref, 231
normalize_hostnames(), 197
NOT, 183
null(), 150
number of open files, 112
numerical operations, 224

O
optimizing regular expressions, 232
optimizing syslog-ng performance, 271

regular expressions, 232
optional(), 61, 72, 77, 81, 104
options, 8

reference, 191
OR, 183
Oracle

sql() configuration, 143-144
output buffer, 179, 181
output queue, 180
overflow queue

output buffer, 180
overriding facility, 54
overwrite_if_older(), 116
owner(), 104, 116, 132, 197

P
pacct(), 74
pad_size(), 61, 67, 73, 78, 82, 87, 97, 104, 116, 132
pair(), 19
parallel connections, 270
parameters

332www.balabit.com

log_fetch_limit() , 178, 181, 270
log_fifo_size() , 178, 181, 270
log_iw_size() , 179, 181
max_connections() , 179, 181, 270
time_sleep(), 270

parsers, 4, 8, 233, 243-244, 288
parsing messages, 233, 243-244, 250

concepts of, 233
filtering parsed messages, 244

password(), 110, 150
path(), 120
pattern database, 243-244, 253, 259

concepts of, 240
creating parsers, 250
pattern matching precedence, 242
structure of, 241
using the results, 244

pattern database schema, 253
pattern databases

correlating messages, 246
pattern matching

procedure of, 242
pattern — rule, 257
pattern — ruleset, 254
patterndb, 254

download, 245
patterns, 254
patterns — rule, 257
pcre, 231
peer_verify(), 209
performance

optimizing multithreading, 265
using multithreading, 264

perm(), 105, 116, 132, 197
persist-file, 286
persistent(), 110
PID, 217
pidfile, 286
pipe(), 73
plugins (see modules)
port(), 110, 120, 151

smtp(), 141
port() or destport(), 125, 156, 164
port() or localport(), 67, 88, 97
posix, 231
PostgreSQL

sql() configuration, 143
prefix, 239

preprocess-into, 286
preventing message loss

flow-control, 178, 181
PRI, 217
PRIORITY, 217
process accounting, 74
process — context-scope, 256
process-mode, 286
program, 78
PROGRAM, 217
program — context-scope, 256
program(), 189
program_override(), 61, 67, 73, 78, 82, 88, 98, 105
proto-template(), 197
provider, 255
pubdate, 254

Q
quote-pairs(), 237

R
rate, 258
read-only macros, 16
reading messages

from external applications, 75
recv_time_zone(), 198
regular expressions, 183, 230, 232, 271

case-insensitive, 230
escaping, 230
pcre, 231
posix, 185

rekey(), 20
relay mode, 7
removing syslog-ng OSE, 31
replace(), 22
replacing message text, 226
reply-to()

smtp(), 141
retry_sql_inserts, 151
reusing snippets, 51
rewritable macros, 16
rewrite if, 229
rewrite rules, 4, 8, 226, 288
rewrite(), 227, 229
rewriting messages, 226

concepts of, 226
conditional rewrites, 229

root, 52

333www.balabit.com

rotating log files, 112
routing-key(), 110
rule, 255
rules, 255
ruleset, 254

S
safe-mode(), 120
sanitize, 224
scaling to multiple CPUs, 264
scl

system(), 90
scope(), 24
SDATA, 217
SEC, C_SEC, R_SEC, S_SEC, 218
secondary messages, 247
sedding messages, 226
segmenting messages, 234-235, 237
send_time_zone(), 198
SEQNUM, 218
sequence ID, 218
sequence number, 218

Cisco, 218
server mode, 7
servers(), 121
session-statements(), 151
set(), 228
set-tag(), 229
setting facility, 54
setting message fields, 228
shift(), 22
silent building, 29
silent rules (see silent building)
skipping messages, 190
smtp()

bcc(), 139
body(), 139
cc(), 140
from(), 140
header(), 141
host(), 141
port(), 141
reply-to(), 141
subject(), 142
to(), 142

soft macros, 16, 213
source drivers, 7, 54

file() driver, 57-58

internal() driver, 56-57
list of, 56, 291
network() driver, 62
pacct() driver, 74
pipe() driver, 69-70
program() driver, 75
reference, 54
sun-streams() driver, 79
syslog() driver, 82-83
system() driver, 90
tcp() driver, 92-93
tcp6() driver, 92-93
udp() driver, 92-93
udp6() driver, 92-93
unix-dgram() driver, 101
unix-stream() driver, 101

source(), 189
SOURCEIP, 218
sources, 4, 8, 54

on different platforms, 55
so_broadcast(), 67, 88, 125, 157, 164, 169
so_keepalive(), 67, 88, 98, 105, 126, 157, 164, 169
so_rcvbuf(), 68, 88, 98, 105, 126, 157, 164, 171
so_sndbuf(), 68, 89, 126, 157, 165, 171
splitting messages, 234-235, 237
spoof_source(), 126, 157, 165
sql destinations, 142
SQL NULL values, 150
STAMP, C_STAMP, R_STAMP, S_STAMP, 218
statistics, 261
stats_freq(), 198
stats_level(), 198
stderr, 286
store-matches, 231
strace, 268
string, 232
string comparison, 184
strip, 225
strip-whitespace, 237
STRUCTURED-DATA, 217
subject()

smtp(), 142
subst(), 227
substr, 225
substraction, 224
supported architectures, 3
supported operating systems, 3
suppress(), 117, 126, 133, 137, 157, 165, 171

334www.balabit.com

sync() or sync_freq() (DEPRECATED), 199
syntax-only, 287
syslog-ng

troubleshooting, 267
syslog-ng clients

configuring, 38
syslog-ng relays

configuring, 41
syslog-ng servers

configuring, 40
syslog-ng.conf, 44

environmental variables, 48
global variables, 48
includes, 50

syslog-parser, 233
system(), 90
systemd, 91
SYSUPTIME, 218

T
table(), 151
TAG, 218
tag — rule, 259
tagging messages, 186, 259
tags, 186, 259

as macro, 219
TAGS, 219
tags — rule, 259
tags(), 57, 62, 68, 73, 78, 82, 89, 100, 105, 190, 244
tcp-keep-alive(), 68, 89, 98
tcp-keepalive-intvl(), 98, 127, 158, 165
tcp-keepalive-probes(), 99, 127, 158, 166
tcp-keepalive-time(), 99, 127, 158, 166
template functions, 220

embedding, 223
template(), 117, 128, 133, 137, 159, 166, 171, 237
templates, 8, 211, 212

defining, 212
example, 213
template functions, 220

template_escape(), 117, 128, 133, 137, 159, 167, 171
test_message, 258
test_value, 258
test_values, 258
tfhash, 222
threaded, 64, 84, 95, 113
threaded(), 199
threading, 264

throttle(), 117, 128, 133, 137, 159, 167, 171
timeout, 259
timestamp, 9, 12, 14, 270
timezone

in chroots, 273
timezones, 8-9
time_reap(), 118, 199
time_reopen(), 199
time_sleep(), 199
time_zone(), 62, 68, 73, 78, 82, 89, 100, 106, 117, 121,
128, 133, 138, 151, 159, 167, 172, 199
TLS, 62, 83, 93, 202

configuring, 203, 205
reference, 208

tls(), 69, 90, 100, 129, 160, 167
to()

smtp(), 142
transport layer security

TLS, 202
transport(), 69, 89, 129, 160
trigger, 258
triggered messages, 247
triggers, 247
troubleshooting, 267

core files, 268
failure script, 269
strace, 268
syslog-ng, 268-269
truss, 268
tusc, 268

truss, 268
trusted_dn(), 209
trusted_keys(), 210
ts_format(), 118, 129, 134, 138, 160, 167, 172, 200
tusc, 268
type(), 152, 230
TZ, C_TZ, R_TZ, S_TZ, 219
TZOFFSET, C_TZOFFSET, R_TZOFFSET,
S_TZOFFSET, 219

U
ulimit, 112
unicode, 232
uninstalling syslog-ng OSE, 31
UNIXTIME, C_UNIXTIME, R_UNIXTIME,
S_UNIXTIME, 219
url — pattern, 257
url — ruleset, 254

335www.balabit.com

urls — pattern, 257
USEC, C_USEC, R_USEC, S_USEC, 219
user, 287
username(), 110, 152
use_dns(), 65, 69, 86, 90, 96, 100, 194, 200
use_fqdn(), 69, 90, 100, 200
use_time_recvd() (DEPRECATED), 200
UTC, 9
utf8, 231-232
uuid, 226

V
value comparison, 184
value — action, 259
value — pattern, 257
value(), 189
value-pairs(), 17, 111, 121
values — action, 259
values — pattern, 257
values(), 152
verbose, 287
version, 254, 287
vhost(), 111

W
WEEK, C_WEEK, R_WEEK, S_WEEK, 219
WEEKDAY, C_WEEKDAY, R_WEEKDAY,
S_WEEKDAY, 219
WEEK_ABBREV, C_WEEK_ABBREV,
R_WEEK_ABBREV, S_WEEK_ABBREV, 219
WEEK_DAY, C_WEEK_DAY, R_WEEK_DAY,
S_WEEK_DAY, 219
WEEK_DAY_NAME, C_WEEK_DAY_NAME,
R_WEEK_DAY_NAME, S_WEEK_DAY_NAME,
219
worker-threads, 287

Y
YEAR, C_YEAR, R_YEAR, S_YEAR, 219

336www.balabit.com

	The syslog-ng Open Source Edition 3.4 Administrator Guide
	Table of Contents
	Preface
	1. Summary of contents
	2. Target audience and prerequisites
	3. Products covered in this guide
	4. Typographical conventions
	5. Contact and support information
	5.1. Sales contact
	5.2. Support contact
	5.3. Training

	6. About this document
	6.1. Summary of changes
	6.1.1. Version 3.3 - 3.4
	6.1.2. Version 3.2 - 3.3

	6.2. Feedback
	6.3. Acknowledgments

	Chapter 1. Introduction to syslog-ng
	1.1. What syslog-ng is
	1.2. What syslog-ng is not
	1.3. Why is syslog-ng needed?
	1.4. What is new in syslog-ng Open Source Edition 3.4?
	1.5. Who uses syslog-ng?
	1.6. Supported platforms

	Chapter 2. The concepts of syslog-ng
	2.1. The philosophy of syslog-ng
	2.2. Logging with syslog-ng
	2.2.1. The route of a log message in syslog-ng

	2.3. Modes of operation
	2.3.1. Client mode
	2.3.2. Relay mode
	2.3.3. Server mode

	2.4. Global objects
	2.5. Timezones and daylight saving
	2.5.1. A note on timezones and timestamps

	2.6. The license of syslog-ng OSE
	2.7. High availability support
	2.8. The structure of a log message
	2.8.1. BSD-syslog or legacy-syslog messages
	2.8.1.1. The PRI message part
	2.8.1.2. The HEADER message part
	2.8.1.3. The MSG message part

	2.8.2. IETF-syslog messages
	2.8.2.1. The PRI message part
	2.8.2.2. The HEADER message part
	2.8.2.3. The STRUCTURED-DATA message part
	2.8.2.4. The MSG message part

	2.8.3. Message representation in syslog-ng OSE
	2.8.4. Structuring macros, metadata, and other value-pairs

	Chapter 3. Installing syslog-ng
	3.1. Compiling syslog-ng from source
	3.2. Uninstalling syslog-ng OSE
	3.3. Configuring Microsoft SQL Server to accept logs from syslog-ng

	Chapter 4. The syslog-ng OSE quick-start guide
	4.1. Configuring syslog-ng on client hosts
	4.2. Configuring syslog-ng on server hosts
	4.3. Configuring syslog-ng relays
	4.3.1. Configuring syslog-ng on relay hosts
	4.3.2. How relaying log messages works

	Chapter 5. The syslog-ng OSE configuration file
	5.1. Location of the syslog-ng configuration file
	5.2. The configuration syntax in detail
	5.3. Notes about the configuration syntax
	5.4. Defining configuration objects inline
	5.5. Using channels in configuration objects
	5.6. Global and environmental variables
	5.7. Loading modules
	5.7.1. Loading modules

	5.8. Managing complex syslog-ng configurations
	5.8.1. Including configuration files
	5.8.2. Reusing configuration blocks
	5.8.2.1. Passing arguments to configuration blocks

	Chapter 6. Collecting log messages — sources and source drivers
	6.1. How sources work
	6.2. Collecting internal messages
	6.2.1. internal() source options

	6.3. Collecting messages from text files
	6.3.1. Notes on reading kernel messages
	6.3.2. file() source options

	6.4. Collecting messages using the RFC3164 protocol
	6.4.1. network() source options

	6.5. Collecting messages from named pipes
	6.5.1. pipe() source options

	6.6. Collecting process accounting logs on Linux
	6.6.1. pacct() options

	6.7. Receiving messages from external applications
	6.7.1. program() source options

	6.8. Collecting messages on Sun Solaris
	6.8.1. sun-streams() source options

	6.9. Collecting messages using the IETF syslog protocol
	6.9.1. syslog() source options

	6.10. Collecting the system-specific log messages of a platform
	6.11. Collecting messages from remote hosts using the BSD syslog protocol
	6.11.1. tcp(), tcp6(), udp() and udp6() source options

	6.12. Collecting messages from UNIX domain sockets
	6.12.1. unix-stream() and unix-dgram() source options

	Chapter 7. Sending and storing log messages — destinations and destination drivers
	7.1. Publishing messages using AMQP
	7.1.1. amqp() destination options

	7.2. Storing messages in plain-text files
	7.2.1. file() destination options

	7.3. Storing messages in a MongoDB database
	7.3.1. mongodb() destination options

	7.4. Sending messages to a remote logserver using the RFC3164 protocol
	7.4.1. network() destination options

	7.5. Sending messages to named pipes
	7.5.1. pipe() destination options

	7.6. Sending messages to external applications
	7.6.1. program() destination options

	7.7. Generating SMTP messages (e-mail) from logs
	7.7.1. smtp() destination options

	7.8. Storing messages in an SQL database
	7.8.1. Using the sql() driver with an Oracle database
	7.8.2. Using the sql() driver with a Microsoft SQL database
	7.8.3. The way syslog-ng interacts with the database
	7.8.3.1. MySQL-specific interaction methods
	7.8.3.2. MsSQL-specific interaction methods

	7.8.4. sql() destination options

	7.9. Sending messages to a remote logserver using the IETF-syslog protocol
	7.9.1. syslog() destination options

	7.10. Sending messages to a remote logserver using the legacy BSD-syslog protocol
	7.10.1. tcp(), tcp6(), udp(), and udp6() destination options

	7.11. Sending messages to UNIX domain sockets
	7.11.1. unix-stream() and unix-dgram() destination options

	7.12. Sending messages to a user terminal — usertty() destination

	Chapter 8. Routing messages: log paths and filters
	8.1. Log paths
	8.1.1. Embedded log statements
	8.1.1.1. Using embedded log statements

	8.1.2. Junctions and channels
	8.1.3. Log path flags

	8.2. Managing incoming and outgoing messages with flow-control
	8.2.1. Flow-control and multiple destinations
	8.2.2. Configuring flow-control

	8.3. Filters
	8.3.1. Using filters
	8.3.2. Combining filters with boolean operators
	8.3.3. Comparing macro values in filters
	8.3.4. Using wildcards, special characters, and regular expressions in filters
	8.3.5. Tagging messages
	8.3.6. Filter functions

	8.4. Dropping messages

	Chapter 9. Global options of syslog-ng OSE
	9.1. Configuring global syslog-ng options
	9.2. Global options

	Chapter 10. TLS-encrypted message transfer
	10.1. Secure logging using TLS
	10.2. Encrypting log messages with TLS
	10.2.1. Configuring TLS on the syslog-ng clients
	10.2.2. Configuring TLS on the syslog-ng server

	10.3. Mutual authentication using TLS
	10.3.1. Configuring TLS on the syslog-ng clients
	10.3.2. Configuring TLS on the syslog-ng server

	10.4. TLS options

	Chapter 11. Manipulating messages
	11.1. Customizing message format
	11.1.1. Formatting messages, filenames, directories, and tablenames
	11.1.2. Templates and macros
	11.1.3. Date-related macros
	11.1.4. Hard vs. soft macros
	11.1.5. Macros of syslog-ng OSE
	11.1.6. Using template functions
	11.1.7. Template functions of syslog-ng OSE

	11.2. Modifying messages
	11.2.1. Replacing message parts
	11.2.2. Setting message fields to specific values
	11.2.3. Creating custom SDATA fields
	11.2.4. Conditional rewrites
	11.2.5. Adding and deleting tags

	11.3. Regular expressions
	11.3.1. Types and options of regular expressions
	11.3.2. Optimizing regular expressions

	Chapter 12. Parsing and segmenting structured messages
	12.1. Parsing syslog messages
	12.2. Parsing messages
	12.2.1. Options of CSV parsers

	12.3. The JSON parser

	Chapter 13. Processing message content with a pattern database
	13.1. Classifying log messages
	13.1.1. The structure of the pattern database
	13.1.2. How pattern matching works
	13.1.3. Artificial ignorance

	13.2. Using pattern databases
	13.2.1. Using parser results in filters and templates
	13.2.2. Downloading sample pattern databases

	13.3. Correlating log messages
	13.3.1. Referencing earlier messages of the context

	13.4. Triggering actions for identified messages
	13.4.1. Conditional actions
	13.4.2. External actions
	13.4.3. Actions and message correlation

	13.5. Creating pattern databases
	13.5.1. Using pattern parsers
	13.5.1.1. Pattern parsers of syslog-ng OSE

	13.5.2. What's new in the syslog-ng pattern database format V4
	13.5.3. The syslog-ng pattern database format

	Chapter 14. Statistics of syslog-ng
	Chapter 15. Multithreading and scaling in syslog-ng OSE
	15.1. Multithreading concepts of syslog-ng OSE
	15.2. Configuring multithreading
	15.3. Optimizing multithreaded performance

	Chapter 16. Troubleshooting syslog-ng
	16.1. Possible causes of losing log messages
	16.2. Creating syslog-ng core files
	16.3. Collecting debugging information with strace, truss, or tusc
	16.4. Running a failure script
	16.5. Stopping syslog-ng

	Chapter 17. Best practices and examples
	17.1. General recommendations
	17.2. Handling lots of parallel connections
	17.3. Handling large message load
	17.4. Using name resolution in syslog-ng
	17.4.1. Resolving hostnames locally

	17.5. Collecting logs from chroot

	Appendix 1. The syslog-ng manual pages
	loggen
	Synopsis
	Description
	Options
	Examples
	Files
	See also
	Author
	Copyright

	pdbtool
	Synopsis
	Description
	The dictionary command
	The dump command
	The match command
	The merge command
	The patternize command
	The test command
	Files
	See also
	Author
	Copyright

	syslog-ng
	Synopsis
	Description
	Options
	Files
	See also
	Author
	Copyright

	syslog-ng.conf
	Synopsis
	Description
	Basic concepts of syslog-ng OSE
	Configuring syslog-ng
	Files
	See also
	Author
	Copyright

	syslog-ng-ctl
	Synopsis
	Description
	Enabling troubleshooting messages
	The stats command
	Reloading the configuration
	Files
	See also
	Author
	Copyright

	Appendix 2. GNU General Public License
	2.1. Preamble
	2.2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	2.2.1. Section 0
	2.2.2. Section 1
	2.2.3. Section 2
	2.2.4. Section 3
	2.2.5. Section 4
	2.2.6. Section 5
	2.2.7. Section 6
	2.2.8. Section 7
	2.2.9. Section 8
	2.2.10. Section 9
	2.2.11. Section 10
	2.2.12. NO WARRANTY Section 11
	2.2.13. Section 12

	2.3. How to Apply These Terms to Your New Programs

	Appendix 3. GNU Lesser General Public License
	3.1. Preamble
	3.2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	3.2.1. Section 0
	3.2.2. Section 1
	3.2.3. Section 2
	3.2.4. Section 3
	3.2.5. Section 4
	3.2.6. Section 5
	3.2.7. Section 6
	3.2.8. Section 7
	3.2.9. Section 8
	3.2.10. Section 9
	3.2.11. Section 10
	3.2.12. Section 11
	3.2.13. Section 12
	3.2.14. Section 13
	3.2.15. Section 14
	3.2.16. NO WARRANTY Section 15
	3.2.17. Section 16

	3.3. How to Apply These Terms to Your New Libraries

	Appendix 4. Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd) License
	Glossary
	List of syslog-ng OSE parameters
	Index

